| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrlelttr | GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| xrlelttr | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ≤ 𝐵) | |
| 2 | simpl1 1003 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ∈ ℝ*) | |
| 3 | simpl2 1004 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ*) | |
| 4 | xrlenlt 8150 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 6 | 1, 5 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴) |
| 7 | 6 | pm2.21d 620 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐴 → 𝐴 < 𝐶)) |
| 8 | idd 21 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐴 < 𝐶 → 𝐴 < 𝐶)) | |
| 9 | simprr 531 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 < 𝐶) | |
| 10 | simpl3 1005 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐶 ∈ ℝ*) | |
| 11 | xrltso 9931 | . . . . . 6 ⊢ < Or ℝ* | |
| 12 | sowlin 4372 | . . . . . 6 ⊢ (( < Or ℝ* ∧ (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) | |
| 13 | 11, 12 | mpan 424 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
| 14 | 3, 10, 2, 13 | syl3anc 1250 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
| 15 | 9, 14 | mpd 13 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶)) |
| 16 | 7, 8, 15 | mpjaod 720 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 < 𝐶) |
| 17 | 16 | ex 115 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4048 Or wor 4347 ℝ*cxr 8119 < clt 8120 ≤ cle 8121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-po 4348 df-iso 4349 df-xp 4686 df-cnv 4688 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 |
| This theorem is referenced by: xrlelttrd 9945 xrre 9955 xrre2 9956 iooss1 10051 iccssioo 10077 iccssico 10080 iocssioo 10098 ioossioo 10100 ico0 10417 bldisj 14923 xblm 14939 blsscls2 15015 metcnpi3 15039 |
| Copyright terms: Public domain | W3C validator |