ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlelttr GIF version

Theorem xrlelttr 9824
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrlelttr
StepHypRef Expression
1 simprl 529 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴𝐵)
2 simpl1 1002 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 ∈ ℝ*)
3 simpl2 1003 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
4 xrlenlt 8040 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
52, 3, 4syl2anc 411 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
61, 5mpbid 147 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴)
76pm2.21d 620 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
8 idd 21 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴 < 𝐶𝐴 < 𝐶))
9 simprr 531 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
10 simpl3 1004 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐶 ∈ ℝ*)
11 xrltso 9814 . . . . . 6 < Or ℝ*
12 sowlin 4335 . . . . . 6 (( < Or ℝ* ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
1311, 12mpan 424 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
143, 10, 2, 13syl3anc 1249 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
159, 14mpd 13 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
167, 8, 15mpjaod 719 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 < 𝐶)
1716ex 115 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980  wcel 2160   class class class wbr 4018   Or wor 4310  *cxr 8009   < clt 8010  cle 8011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-po 4311  df-iso 4312  df-xp 4647  df-cnv 4649  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016
This theorem is referenced by:  xrlelttrd  9828  xrre  9838  xrre2  9839  iooss1  9934  iccssioo  9960  iccssico  9963  iocssioo  9981  ioossioo  9983  ico0  10280  bldisj  14298  xblm  14314  blsscls2  14390  metcnpi3  14414
  Copyright terms: Public domain W3C validator