ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlelttr GIF version

Theorem xrlelttr 9819
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrlelttr
StepHypRef Expression
1 simprl 529 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴𝐵)
2 simpl1 1001 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 ∈ ℝ*)
3 simpl2 1002 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
4 xrlenlt 8035 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
52, 3, 4syl2anc 411 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
61, 5mpbid 147 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴)
76pm2.21d 620 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
8 idd 21 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴 < 𝐶𝐴 < 𝐶))
9 simprr 531 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
10 simpl3 1003 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐶 ∈ ℝ*)
11 xrltso 9809 . . . . . 6 < Or ℝ*
12 sowlin 4332 . . . . . 6 (( < Or ℝ* ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
1311, 12mpan 424 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
143, 10, 2, 13syl3anc 1248 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
159, 14mpd 13 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
167, 8, 15mpjaod 719 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 < 𝐶)
1716ex 115 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 979  wcel 2158   class class class wbr 4015   Or wor 4307  *cxr 8004   < clt 8005  cle 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-po 4308  df-iso 4309  df-xp 4644  df-cnv 4646  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011
This theorem is referenced by:  xrlelttrd  9823  xrre  9833  xrre2  9834  iooss1  9929  iccssioo  9955  iccssico  9958  iocssioo  9976  ioossioo  9978  ico0  10275  bldisj  14141  xblm  14157  blsscls2  14233  metcnpi3  14257
  Copyright terms: Public domain W3C validator