ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlelttr GIF version

Theorem xrlelttr 9615
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrlelttr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrlelttr
StepHypRef Expression
1 simprl 521 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴𝐵)
2 simpl1 985 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 ∈ ℝ*)
3 simpl2 986 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ*)
4 xrlenlt 7849 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
52, 3, 4syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
61, 5mpbid 146 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴)
76pm2.21d 609 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
8 idd 21 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴 < 𝐶𝐴 < 𝐶))
9 simprr 522 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
10 simpl3 987 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐶 ∈ ℝ*)
11 xrltso 9608 . . . . . 6 < Or ℝ*
12 sowlin 4246 . . . . . 6 (( < Or ℝ* ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
1311, 12mpan 421 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
143, 10, 2, 13syl3anc 1217 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
159, 14mpd 13 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
167, 8, 15mpjaod 708 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 < 𝐶)
1716ex 114 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 963  wcel 1481   class class class wbr 3933   Or wor 4221  *cxr 7819   < clt 7820  cle 7821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-cnex 7731  ax-resscn 7732  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2689  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-po 4222  df-iso 4223  df-xp 4549  df-cnv 4551  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826
This theorem is referenced by:  xrlelttrd  9619  xrre  9629  xrre2  9630  iooss1  9725  iccssioo  9751  iccssico  9754  iocssioo  9772  ioossioo  9774  ico0  10066  bldisj  12600  xblm  12616  blsscls2  12692  metcnpi3  12716
  Copyright terms: Public domain W3C validator