ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttr GIF version

Theorem lelttr 8160
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
lelttr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))

Proof of Theorem lelttr
StepHypRef Expression
1 simprl 529 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴𝐵)
2 simpl1 1002 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 ∈ ℝ)
3 simpl2 1003 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
4 lenlt 8147 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
52, 3, 4syl2anc 411 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
61, 5mpbid 147 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴)
76pm2.21d 620 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
8 idd 21 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐴 < 𝐶𝐴 < 𝐶))
9 simprr 531 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐵 < 𝐶)
10 simpl3 1004 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐶 ∈ ℝ)
11 axltwlin 8139 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
123, 10, 2, 11syl3anc 1249 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
139, 12mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → (𝐵 < 𝐴𝐴 < 𝐶))
147, 8, 13mpjaod 719 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐵𝐵 < 𝐶)) → 𝐴 < 𝐶)
1514ex 115 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980  wcel 2175   class class class wbr 4043  cr 7923   < clt 8106  cle 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-ltwlin 8037
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112
This theorem is referenced by:  lelttri  8177  lelttrd  8196  letrp1  8920  ltmul12a  8932  bndndx  9293  uzind  9483  fnn0ind  9488  elfzo0z  10306  fzofzim  10310  elfzodifsumelfzo  10328  flqge  10423  modfzo0difsn  10538  expnlbnd2  10808  caubnd2  11370  mulcn2  11565  cn1lem  11567  climsqz  11588  climsqz2  11589  climcvg1nlem  11602  ltoddhalfle  12146  algcvgblem  12313  pclemub  12552  metss2lem  14911  logdivlti  15295  gausslemma2dlem2  15481
  Copyright terms: Public domain W3C validator