Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lelttr | GIF version |
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
Ref | Expression |
---|---|
lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ≤ 𝐵) | |
2 | simpl1 990 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ∈ ℝ) | |
3 | simpl2 991 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) | |
4 | lenlt 7970 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
5 | 2, 3, 4 | syl2anc 409 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
6 | 1, 5 | mpbid 146 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴) |
7 | 6 | pm2.21d 609 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐴 → 𝐴 < 𝐶)) |
8 | idd 21 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐴 < 𝐶 → 𝐴 < 𝐶)) | |
9 | simprr 522 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 < 𝐶) | |
10 | simpl3 992 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐶 ∈ ℝ) | |
11 | axltwlin 7962 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) | |
12 | 3, 10, 2, 11 | syl3anc 1228 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
13 | 9, 12 | mpd 13 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶)) |
14 | 7, 8, 13 | mpjaod 708 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 < 𝐶) |
15 | 14 | ex 114 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3981 ℝcr 7748 < clt 7929 ≤ cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltwlin 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: lelttri 8000 lelttrd 8019 letrp1 8739 ltmul12a 8751 bndndx 9109 uzind 9298 fnn0ind 9303 elfzo0z 10115 fzofzim 10119 elfzodifsumelfzo 10132 flqge 10213 modfzo0difsn 10326 expnlbnd2 10576 caubnd2 11055 mulcn2 11249 cn1lem 11251 climsqz 11272 climsqz2 11273 climcvg1nlem 11286 ltoddhalfle 11826 algcvgblem 11977 pclemub 12215 metss2lem 13097 logdivlti 13402 |
Copyright terms: Public domain | W3C validator |