Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lelttr | GIF version |
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.) |
Ref | Expression |
---|---|
lelttr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ≤ 𝐵) | |
2 | simpl1 985 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 ∈ ℝ) | |
3 | simpl2 986 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) | |
4 | lenlt 7932 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
5 | 2, 3, 4 | syl2anc 409 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
6 | 1, 5 | mpbid 146 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → ¬ 𝐵 < 𝐴) |
7 | 6 | pm2.21d 609 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐴 → 𝐴 < 𝐶)) |
8 | idd 21 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐴 < 𝐶 → 𝐴 < 𝐶)) | |
9 | simprr 522 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 < 𝐶) | |
10 | simpl3 987 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐶 ∈ ℝ) | |
11 | axltwlin 7924 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) | |
12 | 3, 10, 2, 11 | syl3anc 1217 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
13 | 9, 12 | mpd 13 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶)) |
14 | 7, 8, 13 | mpjaod 708 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶)) → 𝐴 < 𝐶) |
15 | 14 | ex 114 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∧ w3a 963 ∈ wcel 2125 class class class wbr 3961 ℝcr 7710 < clt 7891 ≤ cle 7892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-pre-ltwlin 7824 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-cnv 4587 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 |
This theorem is referenced by: lelttri 7961 lelttrd 7979 letrp1 8698 ltmul12a 8710 bndndx 9068 uzind 9254 fnn0ind 9259 elfzo0z 10061 fzofzim 10065 elfzodifsumelfzo 10078 flqge 10159 modfzo0difsn 10272 expnlbnd2 10521 caubnd2 10994 mulcn2 11186 cn1lem 11188 climsqz 11209 climsqz2 11210 climcvg1nlem 11223 ltoddhalfle 11757 algcvgblem 11897 metss2lem 12836 logdivlti 13141 |
Copyright terms: Public domain | W3C validator |