| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfima2 | GIF version | ||
| Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dfima2 | ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4729 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 2 | dfrn2 4907 | . 2 ⊢ ran (𝐴 ↾ 𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} | |
| 3 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 4 | 3 | brres 5007 | . . . . . 6 ⊢ (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥𝐴𝑦 ∧ 𝑥 ∈ 𝐵)) |
| 5 | ancom 266 | . . . . . 6 ⊢ ((𝑥𝐴𝑦 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | |
| 6 | 4, 5 | bitri 184 | . . . . 5 ⊢ (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) |
| 7 | 6 | exbii 1651 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) |
| 8 | df-rex 2514 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | |
| 9 | 7, 8 | bitr4i 187 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦) |
| 10 | 9 | abbii 2345 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
| 11 | 1, 2, 10 | 3eqtri 2254 | 1 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∃wrex 2509 class class class wbr 4082 ran crn 4717 ↾ cres 4718 “ cima 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-cnv 4724 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 |
| This theorem is referenced by: dfima3 5067 elimag 5068 imasng 5089 imadiflem 5396 imadif 5397 imainlem 5398 imain 5399 funimaexglem 5400 dfimafn 5675 isoini 5935 |
| Copyright terms: Public domain | W3C validator |