ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfima2 GIF version

Theorem dfima2 4965
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima2 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem dfima2
StepHypRef Expression
1 df-ima 4633 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 dfrn2 4808 . 2 ran (𝐴𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴𝐵)𝑦}
3 vex 2738 . . . . . . 7 𝑦 ∈ V
43brres 4906 . . . . . 6 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵))
5 ancom 266 . . . . . 6 ((𝑥𝐴𝑦𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴𝑦))
64, 5bitri 184 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐵𝑥𝐴𝑦))
76exbii 1603 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐴𝑦))
8 df-rex 2459 . . . 4 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐴𝑦))
97, 8bitr4i 187 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝐵 𝑥𝐴𝑦)
109abbii 2291 . 2 {𝑦 ∣ ∃𝑥 𝑥(𝐴𝐵)𝑦} = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
111, 2, 103eqtri 2200 1 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wex 1490  wcel 2146  {cab 2161  wrex 2454   class class class wbr 3998  ran crn 4621  cres 4622  cima 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633
This theorem is referenced by:  dfima3  4966  elimag  4967  imasng  4986  imadiflem  5287  imadif  5288  imainlem  5289  imain  5290  funimaexglem  5291  dfimafn  5556  isoini  5809
  Copyright terms: Public domain W3C validator