ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfima2 GIF version

Theorem dfima2 4763
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima2 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem dfima2
StepHypRef Expression
1 df-ima 4441 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 dfrn2 4612 . 2 ran (𝐴𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴𝐵)𝑦}
3 vex 2622 . . . . . . 7 𝑦 ∈ V
43brres 4707 . . . . . 6 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵))
5 ancom 262 . . . . . 6 ((𝑥𝐴𝑦𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴𝑦))
64, 5bitri 182 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐵𝑥𝐴𝑦))
76exbii 1541 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐴𝑦))
8 df-rex 2365 . . . 4 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐴𝑦))
97, 8bitr4i 185 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝐵 𝑥𝐴𝑦)
109abbii 2203 . 2 {𝑦 ∣ ∃𝑥 𝑥(𝐴𝐵)𝑦} = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
111, 2, 103eqtri 2112 1 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wex 1426  wcel 1438  {cab 2074  wrex 2360   class class class wbr 3837  ran crn 4429  cres 4430  cima 4431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-cnv 4436  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441
This theorem is referenced by:  dfima3  4764  elimag  4765  imasng  4784  imadiflem  5079  imadif  5080  imainlem  5081  imain  5082  funimaexglem  5083  dfimafn  5337  isoini  5579
  Copyright terms: Public domain W3C validator