![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfima2 | GIF version |
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dfima2 | ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4673 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | dfrn2 4851 | . 2 ⊢ ran (𝐴 ↾ 𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} | |
3 | vex 2763 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | brres 4949 | . . . . . 6 ⊢ (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥𝐴𝑦 ∧ 𝑥 ∈ 𝐵)) |
5 | ancom 266 | . . . . . 6 ⊢ ((𝑥𝐴𝑦 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | |
6 | 4, 5 | bitri 184 | . . . . 5 ⊢ (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) |
7 | 6 | exbii 1616 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) |
8 | df-rex 2478 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | |
9 | 7, 8 | bitr4i 187 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦) |
10 | 9 | abbii 2309 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
11 | 1, 2, 10 | 3eqtri 2218 | 1 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∃wrex 2473 class class class wbr 4030 ran crn 4661 ↾ cres 4662 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: dfima3 5009 elimag 5010 imasng 5031 imadiflem 5334 imadif 5335 imainlem 5336 imain 5337 funimaexglem 5338 dfimafn 5606 isoini 5862 |
Copyright terms: Public domain | W3C validator |