ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2d GIF version

Theorem imaeq2d 5067
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
imaeq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem imaeq2d
StepHypRef Expression
1 imaeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 imaeq2 5063 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  imaeq12d  5068  nfimad  5076  elimasng  5095  ressn  5268  foima  5552  f1imacnv  5588  fvco2  5702  fsn2  5808  resfunexg  5859  funfvima3  5872  funiunfvdm  5886  isoselem  5943  fnexALT  6254  eceq1  6713  uniqs2  6740  ecinxp  6755  mapsn  6835  en2  6971  phplem4  7012  phplem4dom  7019  phplem4on  7025  sbthlem2  7121  isbth  7130  resunimafz0  11048  ennnfonelemg  12969  ennnfonelemhf1o  12979  ennnfonelemex  12980  ennnfonelemrn  12985  cnntr  14893  cnptopresti  14906  cnptoprest  14907
  Copyright terms: Public domain W3C validator