| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | GIF version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| imaeq2d | ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | imaeq2 5006 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 “ cima 4667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 |
| This theorem is referenced by: imaeq12d 5011 nfimad 5019 elimasng 5038 ressn 5211 foima 5488 f1imacnv 5524 fvco2 5633 fsn2 5739 resfunexg 5786 funfvima3 5799 funiunfvdm 5813 isoselem 5870 fnexALT 6177 eceq1 6636 uniqs2 6663 ecinxp 6678 mapsn 6758 phplem4 6925 phplem4dom 6932 phplem4on 6937 sbthlem2 7033 isbth 7042 resunimafz0 10940 ennnfonelemg 12645 ennnfonelemhf1o 12655 ennnfonelemex 12656 ennnfonelemrn 12661 cnntr 14545 cnptopresti 14558 cnptoprest 14559 |
| Copyright terms: Public domain | W3C validator |