ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2d GIF version

Theorem imaeq2d 5031
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
imaeq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem imaeq2d
StepHypRef Expression
1 imaeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 imaeq2 5027 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cima 4686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696
This theorem is referenced by:  imaeq12d  5032  nfimad  5040  elimasng  5059  ressn  5232  foima  5515  f1imacnv  5551  fvco2  5661  fsn2  5767  resfunexg  5818  funfvima3  5831  funiunfvdm  5845  isoselem  5902  fnexALT  6209  eceq1  6668  uniqs2  6695  ecinxp  6710  mapsn  6790  en2  6926  phplem4  6967  phplem4dom  6974  phplem4on  6979  sbthlem2  7075  isbth  7084  resunimafz0  10998  ennnfonelemg  12849  ennnfonelemhf1o  12859  ennnfonelemex  12860  ennnfonelemrn  12865  cnntr  14772  cnptopresti  14785  cnptoprest  14786
  Copyright terms: Public domain W3C validator