| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | GIF version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| imaeq2d | ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | imaeq2 5015 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 “ cima 4676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 |
| This theorem is referenced by: imaeq12d 5020 nfimad 5028 elimasng 5047 ressn 5220 foima 5497 f1imacnv 5533 fvco2 5642 fsn2 5748 resfunexg 5795 funfvima3 5808 funiunfvdm 5822 isoselem 5879 fnexALT 6186 eceq1 6645 uniqs2 6672 ecinxp 6687 mapsn 6767 phplem4 6934 phplem4dom 6941 phplem4on 6946 sbthlem2 7042 isbth 7051 resunimafz0 10957 ennnfonelemg 12693 ennnfonelemhf1o 12703 ennnfonelemex 12704 ennnfonelemrn 12709 cnntr 14615 cnptopresti 14628 cnptoprest 14629 |
| Copyright terms: Public domain | W3C validator |