ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2d GIF version

Theorem imaeq2d 4946
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
imaeq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem imaeq2d
StepHypRef Expression
1 imaeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 imaeq2 4942 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  imaeq12d  4947  nfimad  4955  elimasng  4972  ressn  5144  foima  5415  f1imacnv  5449  fvco2  5555  fsn2  5659  resfunexg  5706  funfvima3  5718  funiunfvdm  5731  isoselem  5788  fnexALT  6079  eceq1  6536  uniqs2  6561  ecinxp  6576  mapsn  6656  phplem4  6821  phplem4dom  6828  phplem4on  6833  sbthlem2  6923  isbth  6932  resunimafz0  10744  ennnfonelemg  12336  ennnfonelemhf1o  12346  ennnfonelemex  12347  ennnfonelemrn  12352  cnntr  12875  cnptopresti  12888  cnptoprest  12889
  Copyright terms: Public domain W3C validator