| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2d | GIF version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| imaeq2d | ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | imaeq2 5063 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: imaeq12d 5068 nfimad 5076 elimasng 5095 ressn 5268 foima 5552 f1imacnv 5588 fvco2 5702 fsn2 5808 resfunexg 5859 funfvima3 5872 funiunfvdm 5886 isoselem 5943 fnexALT 6254 eceq1 6713 uniqs2 6740 ecinxp 6755 mapsn 6835 en2 6971 phplem4 7012 phplem4dom 7019 phplem4on 7025 sbthlem2 7121 isbth 7130 resunimafz0 11048 ennnfonelemg 12969 ennnfonelemhf1o 12979 ennnfonelemex 12980 ennnfonelemrn 12985 cnntr 14893 cnptopresti 14906 cnptoprest 14907 |
| Copyright terms: Public domain | W3C validator |