| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqi | GIF version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rneqi | ⊢ ran 𝐴 = ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rneq 4905 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ran crn 4676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-cnv 4683 df-dm 4685 df-rn 4686 |
| This theorem is referenced by: rnmpt 4926 resima 4992 resima2 4993 mptima 5034 ima0 5041 rnuni 5094 imaundi 5095 imaundir 5096 inimass 5099 dminxp 5127 imainrect 5128 xpima1 5129 xpima2m 5130 rnresv 5142 imacnvcnv 5147 rnpropg 5162 imadmres 5175 mptpreima 5176 dmco 5191 resdif 5544 fpr 5766 fprg 5767 fliftfuns 5867 rnoprab 6028 rnmpo 6056 qliftfuns 6706 xpassen 6925 sbthlemi6 7064 ennnfonelemrn 12790 cnconst2 14705 elply2 15207 |
| Copyright terms: Public domain | W3C validator |