| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqi | GIF version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rneqi | ⊢ ran 𝐴 = ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rneq 4894 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ran crn 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 |
| This theorem is referenced by: rnmpt 4915 resima 4980 resima2 4981 mptima 5022 ima0 5029 rnuni 5082 imaundi 5083 imaundir 5084 inimass 5087 dminxp 5115 imainrect 5116 xpima1 5117 xpima2m 5118 rnresv 5130 imacnvcnv 5135 rnpropg 5150 imadmres 5163 mptpreima 5164 dmco 5179 resdif 5529 fpr 5747 fprg 5748 fliftfuns 5848 rnoprab 6009 rnmpo 6037 qliftfuns 6687 xpassen 6898 sbthlemi6 7037 ennnfonelemrn 12661 cnconst2 14553 elply2 15055 |
| Copyright terms: Public domain | W3C validator |