| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqi | GIF version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rneqi | ⊢ ran 𝐴 = ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rneq 4950 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ran crn 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: rnmpt 4971 resima 5037 resima2 5038 mptima 5079 ima0 5086 rnuni 5139 imaundi 5140 imaundir 5141 inimass 5144 dminxp 5172 imainrect 5173 xpima1 5174 xpima2m 5175 rnresv 5187 imacnvcnv 5192 rnpropg 5207 imadmres 5220 mptpreima 5221 dmco 5236 resdif 5593 fpr 5820 fprg 5821 fliftfuns 5921 rnoprab 6086 rnmpo 6114 qliftfuns 6764 xpassen 6985 sbthlemi6 7125 ennnfonelemrn 12985 cnconst2 14901 elply2 15403 iedgedgg 15855 edgiedgbg 15859 edg0iedg0g 15860 uhgrvtxedgiedgb 15935 uspgrf1oedg 15968 usgrf1oedg 15997 usgredg3 16006 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |