Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rneqi | GIF version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rneqi | ⊢ ran 𝐴 = ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rneq 4831 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ran crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: rnmpt 4852 resima 4917 resima2 4918 ima0 4963 rnuni 5015 imaundi 5016 imaundir 5017 inimass 5020 dminxp 5048 imainrect 5049 xpima1 5050 xpima2m 5051 rnresv 5063 imacnvcnv 5068 rnpropg 5083 imadmres 5096 mptpreima 5097 dmco 5112 resdif 5454 fpr 5667 fprg 5668 fliftfuns 5766 rnoprab 5925 rnmpo 5952 qliftfuns 6585 xpassen 6796 sbthlemi6 6927 ennnfonelemrn 12352 cnconst2 12873 |
Copyright terms: Public domain | W3C validator |