ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqi GIF version

Theorem rneqi 4906
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rneqi ran 𝐴 = ran 𝐵

Proof of Theorem rneqi
StepHypRef Expression
1 rneqi.1 . 2 𝐴 = 𝐵
2 rneq 4905 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2ax-mp 5 1 ran 𝐴 = ran 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1373  ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  rnmpt  4926  resima  4992  resima2  4993  mptima  5034  ima0  5041  rnuni  5094  imaundi  5095  imaundir  5096  inimass  5099  dminxp  5127  imainrect  5128  xpima1  5129  xpima2m  5130  rnresv  5142  imacnvcnv  5147  rnpropg  5162  imadmres  5175  mptpreima  5176  dmco  5191  resdif  5544  fpr  5766  fprg  5767  fliftfuns  5867  rnoprab  6028  rnmpo  6056  qliftfuns  6706  xpassen  6925  sbthlemi6  7064  ennnfonelemrn  12790  cnconst2  14705  elply2  15207
  Copyright terms: Public domain W3C validator