![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqi | GIF version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rneqi | ⊢ ran 𝐴 = ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rneq 4889 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ran crn 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-cnv 4667 df-dm 4669 df-rn 4670 |
This theorem is referenced by: rnmpt 4910 resima 4975 resima2 4976 mptima 5017 ima0 5024 rnuni 5077 imaundi 5078 imaundir 5079 inimass 5082 dminxp 5110 imainrect 5111 xpima1 5112 xpima2m 5113 rnresv 5125 imacnvcnv 5130 rnpropg 5145 imadmres 5158 mptpreima 5159 dmco 5174 resdif 5522 fpr 5740 fprg 5741 fliftfuns 5841 rnoprab 6001 rnmpo 6029 qliftfuns 6673 xpassen 6884 sbthlemi6 7021 ennnfonelemrn 12576 cnconst2 14401 elply2 14881 |
Copyright terms: Public domain | W3C validator |