Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rneqi | GIF version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rneqi | ⊢ ran 𝐴 = ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rneq 4806 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ran crn 4580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-cnv 4587 df-dm 4589 df-rn 4590 |
This theorem is referenced by: rnmpt 4827 resima 4892 resima2 4893 ima0 4938 rnuni 4990 imaundi 4991 imaundir 4992 inimass 4995 dminxp 5023 imainrect 5024 xpima1 5025 xpima2m 5026 rnresv 5038 imacnvcnv 5043 rnpropg 5058 imadmres 5071 mptpreima 5072 dmco 5087 resdif 5429 fpr 5642 fprg 5643 fliftfuns 5739 rnoprab 5894 rnmpo 5921 qliftfuns 6553 xpassen 6764 sbthlemi6 6895 ennnfonelemrn 12099 cnconst2 12572 |
Copyright terms: Public domain | W3C validator |