ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rneqi GIF version

Theorem rneqi 4857
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.)
Hypothesis
Ref Expression
rneqi.1 𝐴 = 𝐵
Assertion
Ref Expression
rneqi ran 𝐴 = ran 𝐵

Proof of Theorem rneqi
StepHypRef Expression
1 rneqi.1 . 2 𝐴 = 𝐵
2 rneq 4856 . 2 (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵)
31, 2ax-mp 5 1 ran 𝐴 = ran 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1353  ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by:  rnmpt  4877  resima  4942  resima2  4943  ima0  4989  rnuni  5042  imaundi  5043  imaundir  5044  inimass  5047  dminxp  5075  imainrect  5076  xpima1  5077  xpima2m  5078  rnresv  5090  imacnvcnv  5095  rnpropg  5110  imadmres  5123  mptpreima  5124  dmco  5139  resdif  5485  fpr  5700  fprg  5701  fliftfuns  5801  rnoprab  5960  rnmpo  5987  qliftfuns  6621  xpassen  6832  sbthlemi6  6963  ennnfonelemrn  12422  cnconst2  13818
  Copyright terms: Public domain W3C validator