| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqi | GIF version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rneqi | ⊢ ran 𝐴 = ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rneq 4904 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ran crn 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-cnv 4682 df-dm 4684 df-rn 4685 |
| This theorem is referenced by: rnmpt 4925 resima 4991 resima2 4992 mptima 5033 ima0 5040 rnuni 5093 imaundi 5094 imaundir 5095 inimass 5098 dminxp 5126 imainrect 5127 xpima1 5128 xpima2m 5129 rnresv 5141 imacnvcnv 5146 rnpropg 5161 imadmres 5174 mptpreima 5175 dmco 5190 resdif 5543 fpr 5765 fprg 5766 fliftfuns 5866 rnoprab 6027 rnmpo 6055 qliftfuns 6705 xpassen 6924 sbthlemi6 7063 ennnfonelemrn 12732 cnconst2 14647 elply2 15149 |
| Copyright terms: Public domain | W3C validator |