![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rneqi | GIF version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rneqi | ⊢ ran 𝐴 = ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rneq 4856 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ran crn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: rnmpt 4877 resima 4942 resima2 4943 ima0 4989 rnuni 5042 imaundi 5043 imaundir 5044 inimass 5047 dminxp 5075 imainrect 5076 xpima1 5077 xpima2m 5078 rnresv 5090 imacnvcnv 5095 rnpropg 5110 imadmres 5123 mptpreima 5124 dmco 5139 resdif 5485 fpr 5700 fprg 5701 fliftfuns 5801 rnoprab 5960 rnmpo 5987 qliftfuns 6621 xpassen 6832 sbthlemi6 6963 ennnfonelemrn 12422 cnconst2 13818 |
Copyright terms: Public domain | W3C validator |