| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rneqi | GIF version | ||
| Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| rneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rneqi | ⊢ ran 𝐴 = ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rneq 4919 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ran crn 4689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-cnv 4696 df-dm 4698 df-rn 4699 |
| This theorem is referenced by: rnmpt 4940 resima 5006 resima2 5007 mptima 5048 ima0 5055 rnuni 5108 imaundi 5109 imaundir 5110 inimass 5113 dminxp 5141 imainrect 5142 xpima1 5143 xpima2m 5144 rnresv 5156 imacnvcnv 5161 rnpropg 5176 imadmres 5189 mptpreima 5190 dmco 5205 resdif 5561 fpr 5784 fprg 5785 fliftfuns 5885 rnoprab 6046 rnmpo 6074 qliftfuns 6724 xpassen 6945 sbthlemi6 7085 ennnfonelemrn 12875 cnconst2 14790 elply2 15292 iedgedgg 15742 edgiedgbg 15746 edg0iedg0g 15747 uhgrvtxedgiedgb 15817 |
| Copyright terms: Public domain | W3C validator |