Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rneqi | GIF version |
Description: Equality inference for range. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
rneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rneqi | ⊢ ran 𝐴 = ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rneq 4838 | . 2 ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ran 𝐴 = ran 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ran crn 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: rnmpt 4859 resima 4924 resima2 4925 ima0 4970 rnuni 5022 imaundi 5023 imaundir 5024 inimass 5027 dminxp 5055 imainrect 5056 xpima1 5057 xpima2m 5058 rnresv 5070 imacnvcnv 5075 rnpropg 5090 imadmres 5103 mptpreima 5104 dmco 5119 resdif 5464 fpr 5678 fprg 5679 fliftfuns 5777 rnoprab 5936 rnmpo 5963 qliftfuns 6597 xpassen 6808 sbthlemi6 6939 ennnfonelemrn 12374 cnconst2 13027 |
Copyright terms: Public domain | W3C validator |