ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ausgrusgrien GIF version

Theorem ausgrusgrien 15926
Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020.)
Hypotheses
Ref Expression
ausgr.1 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
ausgrusgri.1 𝑂 = {𝑓𝑓:dom 𝑓1-1→ran 𝑓}
Assertion
Ref Expression
ausgrusgrien ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph)
Distinct variable groups:   𝑣,𝑒,𝑥,𝐻   𝑓,𝐻   𝑥,𝑊
Allowed substitution hints:   𝐺(𝑥,𝑣,𝑒,𝑓)   𝑂(𝑥,𝑣,𝑒,𝑓)   𝑊(𝑣,𝑒,𝑓)

Proof of Theorem ausgrusgrien
StepHypRef Expression
1 vtxex 15778 . . . . 5 (𝐻𝑊 → (Vtx‘𝐻) ∈ V)
2 edgvalg 15817 . . . . . 6 (𝐻𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻))
3 iedgex 15779 . . . . . . 7 (𝐻𝑊 → (iEdg‘𝐻) ∈ V)
4 rnexg 4963 . . . . . . 7 ((iEdg‘𝐻) ∈ V → ran (iEdg‘𝐻) ∈ V)
53, 4syl 14 . . . . . 6 (𝐻𝑊 → ran (iEdg‘𝐻) ∈ V)
62, 5eqeltrd 2284 . . . . 5 (𝐻𝑊 → (Edg‘𝐻) ∈ V)
7 ausgr.1 . . . . . 6 𝐺 = {⟨𝑣, 𝑒⟩ ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣𝑥 ≈ 2o}}
87isausgren 15922 . . . . 5 (((Vtx‘𝐻) ∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}))
91, 6, 8syl2anc 411 . . . 4 (𝐻𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}))
102sseq1d 3231 . . . . 5 (𝐻𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} ↔ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}))
11 ausgrusgri.1 . . . . . . . . . . 11 𝑂 = {𝑓𝑓:dom 𝑓1-1→ran 𝑓}
1211eleq2i 2274 . . . . . . . . . 10 ((iEdg‘𝐻) ∈ 𝑂 ↔ (iEdg‘𝐻) ∈ {𝑓𝑓:dom 𝑓1-1→ran 𝑓})
1312biimpi 120 . . . . . . . . 9 ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻) ∈ {𝑓𝑓:dom 𝑓1-1→ran 𝑓})
14 id 19 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → 𝑓 = (iEdg‘𝐻))
15 dmeq 4898 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → dom 𝑓 = dom (iEdg‘𝐻))
16 rneq 4925 . . . . . . . . . . 11 (𝑓 = (iEdg‘𝐻) → ran 𝑓 = ran (iEdg‘𝐻))
1714, 15, 16f1eq123d 5537 . . . . . . . . . 10 (𝑓 = (iEdg‘𝐻) → (𝑓:dom 𝑓1-1→ran 𝑓 ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻)))
1817elabg 2927 . . . . . . . . 9 ((iEdg‘𝐻) ∈ 𝑂 → ((iEdg‘𝐻) ∈ {𝑓𝑓:dom 𝑓1-1→ran 𝑓} ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻)))
1913, 18mpbid 147 . . . . . . . 8 ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))
20193ad2ant3 1023 . . . . . . 7 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))
21 simp2 1001 . . . . . . 7 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} ∧ (iEdg‘𝐻) ∈ 𝑂) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})
22 f1ssr 5511 . . . . . . 7 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})
2320, 21, 22syl2anc 411 . . . . . 6 ((𝐻𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})
24233exp 1205 . . . . 5 (𝐻𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})))
2510, 24sylbid 150 . . . 4 (𝐻𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})))
269, 25sylbid 150 . . 3 (𝐻𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})))
27263imp 1196 . 2 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})
28 eqid 2207 . . . 4 (Vtx‘𝐻) = (Vtx‘𝐻)
29 eqid 2207 . . . 4 (iEdg‘𝐻) = (iEdg‘𝐻)
3028, 29isusgren 15913 . . 3 (𝐻𝑊 → (𝐻 ∈ USGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}))
31303ad2ant1 1021 . 2 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → (𝐻 ∈ USGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}))
3227, 31mpbird 167 1 ((𝐻𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  wcel 2178  {cab 2193  {crab 2490  Vcvv 2777  wss 3175  𝒫 cpw 3627   class class class wbr 4060  {copab 4121  dom cdm 4694  ran crn 4695  1-1wf1 5288  cfv 5291  2oc2o 6521  cen 6850  Vtxcvtx 15772  iEdgciedg 15773  Edgcedg 15815  USGraphcusgr 15909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-setind 4604  ax-cnex 8053  ax-resscn 8054  ax-1cn 8055  ax-1re 8056  ax-icn 8057  ax-addcl 8058  ax-addrcl 8059  ax-mulcl 8060  ax-addcom 8062  ax-mulcom 8063  ax-addass 8064  ax-mulass 8065  ax-distr 8066  ax-i2m1 8067  ax-1rid 8069  ax-0id 8070  ax-rnegex 8071  ax-cnre 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2779  df-sbc 3007  df-csb 3103  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-if 3581  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-int 3901  df-br 4061  df-opab 4123  df-mpt 4124  df-id 4359  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-iota 5252  df-fun 5293  df-fn 5294  df-f 5295  df-f1 5296  df-fo 5297  df-fv 5299  df-riota 5924  df-ov 5972  df-oprab 5973  df-mpo 5974  df-1st 6251  df-2nd 6252  df-sub 8282  df-inn 9074  df-2 9132  df-3 9133  df-4 9134  df-5 9135  df-6 9136  df-7 9137  df-8 9138  df-9 9139  df-n0 9333  df-dec 9542  df-ndx 12996  df-slot 12997  df-base 12999  df-edgf 15765  df-vtx 15774  df-iedg 15775  df-edg 15816  df-usgren 15911
This theorem is referenced by:  usgrausgrben  15927
  Copyright terms: Public domain W3C validator