Proof of Theorem ausgrusgrien
| Step | Hyp | Ref
| Expression |
| 1 | | vtxex 15778 |
. . . . 5
⊢ (𝐻 ∈ 𝑊 → (Vtx‘𝐻) ∈ V) |
| 2 | | edgvalg 15817 |
. . . . . 6
⊢ (𝐻 ∈ 𝑊 → (Edg‘𝐻) = ran (iEdg‘𝐻)) |
| 3 | | iedgex 15779 |
. . . . . . 7
⊢ (𝐻 ∈ 𝑊 → (iEdg‘𝐻) ∈ V) |
| 4 | | rnexg 4963 |
. . . . . . 7
⊢
((iEdg‘𝐻)
∈ V → ran (iEdg‘𝐻) ∈ V) |
| 5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝐻 ∈ 𝑊 → ran (iEdg‘𝐻) ∈ V) |
| 6 | 2, 5 | eqeltrd 2284 |
. . . . 5
⊢ (𝐻 ∈ 𝑊 → (Edg‘𝐻) ∈ V) |
| 7 | | ausgr.1 |
. . . . . 6
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} |
| 8 | 7 | isausgren 15922 |
. . . . 5
⊢
(((Vtx‘𝐻)
∈ V ∧ (Edg‘𝐻) ∈ V) → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})) |
| 9 | 1, 6, 8 | syl2anc 411 |
. . . 4
⊢ (𝐻 ∈ 𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) ↔ (Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})) |
| 10 | 2 | sseq1d 3231 |
. . . . 5
⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} ↔ ran
(iEdg‘𝐻) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐻) ∣ 𝑥 ≈
2o})) |
| 11 | | ausgrusgri.1 |
. . . . . . . . . . 11
⊢ 𝑂 = {𝑓 ∣ 𝑓:dom 𝑓–1-1→ran 𝑓} |
| 12 | 11 | eleq2i 2274 |
. . . . . . . . . 10
⊢
((iEdg‘𝐻)
∈ 𝑂 ↔
(iEdg‘𝐻) ∈
{𝑓 ∣ 𝑓:dom 𝑓–1-1→ran 𝑓}) |
| 13 | 12 | biimpi 120 |
. . . . . . . . 9
⊢
((iEdg‘𝐻)
∈ 𝑂 →
(iEdg‘𝐻) ∈
{𝑓 ∣ 𝑓:dom 𝑓–1-1→ran 𝑓}) |
| 14 | | id 19 |
. . . . . . . . . . 11
⊢ (𝑓 = (iEdg‘𝐻) → 𝑓 = (iEdg‘𝐻)) |
| 15 | | dmeq 4898 |
. . . . . . . . . . 11
⊢ (𝑓 = (iEdg‘𝐻) → dom 𝑓 = dom (iEdg‘𝐻)) |
| 16 | | rneq 4925 |
. . . . . . . . . . 11
⊢ (𝑓 = (iEdg‘𝐻) → ran 𝑓 = ran (iEdg‘𝐻)) |
| 17 | 14, 15, 16 | f1eq123d 5537 |
. . . . . . . . . 10
⊢ (𝑓 = (iEdg‘𝐻) → (𝑓:dom 𝑓–1-1→ran 𝑓 ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))) |
| 18 | 17 | elabg 2927 |
. . . . . . . . 9
⊢
((iEdg‘𝐻)
∈ 𝑂 →
((iEdg‘𝐻) ∈
{𝑓 ∣ 𝑓:dom 𝑓–1-1→ran 𝑓} ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻))) |
| 19 | 13, 18 | mpbid 147 |
. . . . . . . 8
⊢
((iEdg‘𝐻)
∈ 𝑂 →
(iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1→ran (iEdg‘𝐻)) |
| 20 | 19 | 3ad2ant3 1023 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} ∧
(iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→ran (iEdg‘𝐻)) |
| 21 | | simp2 1001 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} ∧
(iEdg‘𝐻) ∈ 𝑂) → ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}) |
| 22 | | f1ssr 5511 |
. . . . . . 7
⊢
(((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1→ran (iEdg‘𝐻) ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}) →
(iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}) |
| 23 | 20, 21, 22 | syl2anc 411 |
. . . . . 6
⊢ ((𝐻 ∈ 𝑊 ∧ ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} ∧
(iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}) |
| 24 | 23 | 3exp 1205 |
. . . . 5
⊢ (𝐻 ∈ 𝑊 → (ran (iEdg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} →
((iEdg‘𝐻) ∈
𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}))) |
| 25 | 10, 24 | sylbid 150 |
. . . 4
⊢ (𝐻 ∈ 𝑊 → ((Edg‘𝐻) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o} →
((iEdg‘𝐻) ∈
𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}))) |
| 26 | 9, 25 | sylbid 150 |
. . 3
⊢ (𝐻 ∈ 𝑊 → ((Vtx‘𝐻)𝐺(Edg‘𝐻) → ((iEdg‘𝐻) ∈ 𝑂 → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}))) |
| 27 | 26 | 3imp 1196 |
. 2
⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o}) |
| 28 | | eqid 2207 |
. . . 4
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 29 | | eqid 2207 |
. . . 4
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
| 30 | 28, 29 | isusgren 15913 |
. . 3
⊢ (𝐻 ∈ 𝑊 → (𝐻 ∈ USGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})) |
| 31 | 30 | 3ad2ant1 1021 |
. 2
⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → (𝐻 ∈ USGraph ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ 𝑥 ≈ 2o})) |
| 32 | 27, 31 | mpbird 167 |
1
⊢ ((𝐻 ∈ 𝑊 ∧ (Vtx‘𝐻)𝐺(Edg‘𝐻) ∧ (iEdg‘𝐻) ∈ 𝑂) → 𝐻 ∈ USGraph) |