Proof of Theorem ausgrusgrben
| Step | Hyp | Ref
| Expression |
| 1 | | f1oi 5584 |
. . . . 5
⊢ ( I
↾ 𝐸):𝐸–1-1-onto→𝐸 |
| 2 | | dff1o5 5554 |
. . . . . 6
⊢ (( I
↾ 𝐸):𝐸–1-1-onto→𝐸 ↔ (( I ↾ 𝐸):𝐸–1-1→𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸)) |
| 3 | | f1ss 5510 |
. . . . . . . . . 10
⊢ ((( I
↾ 𝐸):𝐸–1-1→𝐸 ∧ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) → ( I ↾
𝐸):𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 4 | | dmresi 5034 |
. . . . . . . . . . . 12
⊢ dom ( I
↾ 𝐸) = 𝐸 |
| 5 | 4 | eqcomi 2211 |
. . . . . . . . . . 11
⊢ 𝐸 = dom ( I ↾ 𝐸) |
| 6 | | f1eq2 5500 |
. . . . . . . . . . 11
⊢ (𝐸 = dom ( I ↾ 𝐸) → (( I ↾ 𝐸):𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ↔ ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . . . 10
⊢ (( I
↾ 𝐸):𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ↔ ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 8 | 3, 7 | sylib 122 |
. . . . . . . . 9
⊢ ((( I
↾ 𝐸):𝐸–1-1→𝐸 ∧ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) → ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 9 | 8 | ex 115 |
. . . . . . . 8
⊢ (( I
↾ 𝐸):𝐸–1-1→𝐸 → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 10 | 9 | a1d 22 |
. . . . . . 7
⊢ (( I
↾ 𝐸):𝐸–1-1→𝐸 → ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}))) |
| 11 | 10 | adantr 276 |
. . . . . 6
⊢ ((( I
↾ 𝐸):𝐸–1-1→𝐸 ∧ ran ( I ↾ 𝐸) = 𝐸) → ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}))) |
| 12 | 2, 11 | sylbi 121 |
. . . . 5
⊢ (( I
↾ 𝐸):𝐸–1-1-onto→𝐸 → ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}))) |
| 13 | 1, 12 | ax-mp 5 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 14 | | df-f 5295 |
. . . . . 6
⊢ (( I
↾ 𝐸):dom ( I ↾
𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ↔ (( I ↾
𝐸) Fn dom ( I ↾ 𝐸) ∧ ran ( I ↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 15 | | rnresi 5059 |
. . . . . . . . 9
⊢ ran ( I
↾ 𝐸) = 𝐸 |
| 16 | 15 | sseq1i 3228 |
. . . . . . . 8
⊢ (ran ( I
↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 17 | 16 | biimpi 120 |
. . . . . . 7
⊢ (ran ( I
↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 18 | 17 | a1d 22 |
. . . . . 6
⊢ (ran ( I
↾ 𝐸) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 19 | 14, 18 | simplbiim 387 |
. . . . 5
⊢ (( I
↾ 𝐸):dom ( I ↾
𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 20 | | f1f 5504 |
. . . . 5
⊢ (( I
↾ 𝐸):dom ( I ↾
𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → ( I ↾
𝐸):dom ( I ↾ 𝐸)⟶{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 21 | 19, 20 | syl11 31 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (( I ↾ 𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 22 | 13, 21 | impbid 129 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ↔ ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 23 | | resiexg 5024 |
. . . . 5
⊢ (𝐸 ∈ 𝑌 → ( I ↾ 𝐸) ∈ V) |
| 24 | | opiedgfv 15785 |
. . . . 5
⊢ ((𝑉 ∈ 𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (iEdg‘〈𝑉, ( I ↾ 𝐸)〉) = ( I ↾ 𝐸)) |
| 25 | 23, 24 | sylan2 286 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, ( I ↾ 𝐸)〉) = ( I ↾ 𝐸)) |
| 26 | 25 | dmeqd 4900 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → dom (iEdg‘〈𝑉, ( I ↾ 𝐸)〉) = dom ( I ↾ 𝐸)) |
| 27 | | opvtxfv 15782 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑋 ∧ ( I ↾ 𝐸) ∈ V) → (Vtx‘〈𝑉, ( I ↾ 𝐸)〉) = 𝑉) |
| 28 | 23, 27 | sylan2 286 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, ( I ↾ 𝐸)〉) = 𝑉) |
| 29 | 28 | pweqd 3632 |
. . . . 5
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝐸)〉) = 𝒫 𝑉) |
| 30 | 29 | rabeqdv 2771 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → {𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝐸)〉) ∣ 𝑥 ≈ 2o} = {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o}) |
| 31 | 25, 26, 30 | f1eq123d 5537 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((iEdg‘〈𝑉, ( I ↾ 𝐸)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝐸)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝐸)〉) ∣ 𝑥 ≈ 2o} ↔ ( I ↾
𝐸):dom ( I ↾ 𝐸)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 32 | 22, 31 | bitr4d 191 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o} ↔
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉):dom
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝐸)〉) ∣ 𝑥 ≈ 2o})) |
| 33 | | ausgr.1 |
. . 3
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ 𝑒 ⊆ {𝑥 ∈ 𝒫 𝑣 ∣ 𝑥 ≈ 2o}} |
| 34 | 33 | isausgren 15922 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉𝐺𝐸 ↔ 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 𝑥 ≈ 2o})) |
| 35 | | opexg 4291 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ ( I ↾ 𝐸) ∈ V) → 〈𝑉, ( I ↾ 𝐸)〉 ∈ V) |
| 36 | 23, 35 | sylan2 286 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, ( I ↾ 𝐸)〉 ∈ V) |
| 37 | | eqid 2207 |
. . . 4
⊢
(Vtx‘〈𝑉,
( I ↾ 𝐸)〉) =
(Vtx‘〈𝑉, ( I
↾ 𝐸)〉) |
| 38 | | eqid 2207 |
. . . 4
⊢
(iEdg‘〈𝑉,
( I ↾ 𝐸)〉) =
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉) |
| 39 | 37, 38 | isusgren 15913 |
. . 3
⊢
(〈𝑉, ( I
↾ 𝐸)〉 ∈ V
→ (〈𝑉, ( I
↾ 𝐸)〉 ∈
USGraph ↔ (iEdg‘〈𝑉, ( I ↾ 𝐸)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝐸)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝐸)〉) ∣ 𝑥 ≈ 2o})) |
| 40 | 36, 39 | syl 14 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (〈𝑉, ( I ↾ 𝐸)〉 ∈ USGraph ↔
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉):dom
(iEdg‘〈𝑉, ( I
↾ 𝐸)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝐸)〉) ∣ 𝑥 ≈ 2o})) |
| 41 | 32, 34, 40 | 3bitr4d 220 |
1
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉𝐺𝐸 ↔ 〈𝑉, ( I ↾ 𝐸)〉 ∈ USGraph)) |