| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscrngd | GIF version | ||
| Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| isringd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| isringd.p | ⊢ (𝜑 → + = (+g‘𝑅)) |
| isringd.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
| isringd.g | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| isringd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
| isringd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| isringd.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| isringd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| isringd.u | ⊢ (𝜑 → 1 ∈ 𝐵) |
| isringd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) |
| isringd.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) |
| iscrngd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
| Ref | Expression |
|---|---|
| iscrngd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | isringd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝑅)) | |
| 3 | isringd.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 4 | isringd.g | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 5 | isringd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) | |
| 6 | isringd.a | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
| 7 | isringd.d | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
| 8 | isringd.e | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
| 9 | isringd.u | . . 3 ⊢ (𝜑 → 1 ∈ 𝐵) | |
| 10 | isringd.i | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) | |
| 11 | isringd.h | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | isringd 13803 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 13 | eqid 2205 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 14 | eqid 2205 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 15 | 13, 14 | mgpbasg 13688 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
| 16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
| 17 | 1, 16 | eqtrd 2238 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 18 | eqid 2205 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | 13, 18 | mgpplusgg 13686 | . . . . 5 ⊢ (𝑅 ∈ Ring → (.r‘𝑅) = (+g‘(mulGrp‘𝑅))) |
| 20 | 12, 19 | syl 14 | . . . 4 ⊢ (𝜑 → (.r‘𝑅) = (+g‘(mulGrp‘𝑅))) |
| 21 | 3, 20 | eqtrd 2238 | . . 3 ⊢ (𝜑 → · = (+g‘(mulGrp‘𝑅))) |
| 22 | 17, 21, 5, 6, 9, 10, 11 | ismndd 13269 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 23 | iscrngd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
| 24 | 17, 21, 22, 23 | iscmnd 13634 | . 2 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
| 25 | 13 | iscrng 13765 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd)) |
| 26 | 12, 24, 25 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 +gcplusg 12909 .rcmulr 12910 Grpcgrp 13332 CMndccmn 13620 mulGrpcmgp 13682 Ringcrg 13758 CRingccrg 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-plusg 12922 df-mulr 12923 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-cmn 13622 df-mgp 13683 df-ring 13760 df-cring 13761 |
| This theorem is referenced by: cncrng 14331 |
| Copyright terms: Public domain | W3C validator |