ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrngd GIF version

Theorem iscrngd 13889
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
isringd.b (𝜑𝐵 = (Base‘𝑅))
isringd.p (𝜑+ = (+g𝑅))
isringd.t (𝜑· = (.r𝑅))
isringd.g (𝜑𝑅 ∈ Grp)
isringd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
isringd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
isringd.d ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
isringd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
isringd.u (𝜑1𝐵)
isringd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
isringd.h ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
iscrngd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
Assertion
Ref Expression
iscrngd (𝜑𝑅 ∈ CRing)
Distinct variable groups:   𝑥, 1   𝑥,𝑦,𝑧,𝐵   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   1 (𝑦,𝑧)

Proof of Theorem iscrngd
StepHypRef Expression
1 isringd.b . . 3 (𝜑𝐵 = (Base‘𝑅))
2 isringd.p . . 3 (𝜑+ = (+g𝑅))
3 isringd.t . . 3 (𝜑· = (.r𝑅))
4 isringd.g . . 3 (𝜑𝑅 ∈ Grp)
5 isringd.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
6 isringd.a . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7 isringd.d . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
8 isringd.e . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9 isringd.u . . 3 (𝜑1𝐵)
10 isringd.i . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
11 isringd.h . . 3 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11isringd 13888 . 2 (𝜑𝑅 ∈ Ring)
13 eqid 2206 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
14 eqid 2206 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1513, 14mgpbasg 13773 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
1612, 15syl 14 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
171, 16eqtrd 2239 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝑅)))
18 eqid 2206 . . . . . 6 (.r𝑅) = (.r𝑅)
1913, 18mgpplusgg 13771 . . . . 5 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
2012, 19syl 14 . . . 4 (𝜑 → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
213, 20eqtrd 2239 . . 3 (𝜑· = (+g‘(mulGrp‘𝑅)))
2217, 21, 5, 6, 9, 10, 11ismndd 13354 . . 3 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
23 iscrngd.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2417, 21, 22, 23iscmnd 13719 . 2 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2513iscrng 13850 . 2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd))
2612, 24, 25sylanbrc 417 1 (𝜑𝑅 ∈ CRing)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  cfv 5285  (class class class)co 5962  Basecbs 12917  +gcplusg 12994  .rcmulr 12995  Grpcgrp 13417  CMndccmn 13705  mulGrpcmgp 13767  Ringcrg 13843  CRingccrg 13844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-plusg 13007  df-mulr 13008  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-cmn 13707  df-mgp 13768  df-ring 13845  df-cring 13846
This theorem is referenced by:  cncrng  14416
  Copyright terms: Public domain W3C validator