Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iscrngd | GIF version |
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
isringd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
isringd.p | ⊢ (𝜑 → + = (+g‘𝑅)) |
isringd.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
isringd.g | ⊢ (𝜑 → 𝑅 ∈ Grp) |
isringd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
isringd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
isringd.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
isringd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
isringd.u | ⊢ (𝜑 → 1 ∈ 𝐵) |
isringd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) |
isringd.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) |
iscrngd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
Ref | Expression |
---|---|
iscrngd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isringd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | isringd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝑅)) | |
3 | isringd.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
4 | isringd.g | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
5 | isringd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) | |
6 | isringd.a | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
7 | isringd.d | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
8 | isringd.e | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
9 | isringd.u | . . 3 ⊢ (𝜑 → 1 ∈ 𝐵) | |
10 | isringd.i | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) | |
11 | isringd.h | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | isringd 13012 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | eqid 2175 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
14 | eqid 2175 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | 13, 14 | mgpbasg 12930 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
17 | 1, 16 | eqtrd 2208 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
18 | eqid 2175 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | 13, 18 | mgpplusgg 12929 | . . . . 5 ⊢ (𝑅 ∈ Ring → (.r‘𝑅) = (+g‘(mulGrp‘𝑅))) |
20 | 12, 19 | syl 14 | . . . 4 ⊢ (𝜑 → (.r‘𝑅) = (+g‘(mulGrp‘𝑅))) |
21 | 3, 20 | eqtrd 2208 | . . 3 ⊢ (𝜑 → · = (+g‘(mulGrp‘𝑅))) |
22 | 17, 21, 5, 6, 9, 10, 11 | ismndd 12703 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
23 | iscrngd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
24 | 17, 21, 22, 23 | iscmnd 12897 | . 2 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
25 | 13 | iscrng 12979 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd)) |
26 | 12, 24, 25 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 +gcplusg 12492 .rcmulr 12493 Grpcgrp 12738 CMndccmn 12884 mulGrpcmgp 12925 Ringcrg 12972 CRingccrg 12973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-cmn 12886 df-mgp 12926 df-ring 12974 df-cring 12975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |