![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iscrngd | GIF version |
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
isringd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
isringd.p | ⊢ (𝜑 → + = (+g‘𝑅)) |
isringd.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
isringd.g | ⊢ (𝜑 → 𝑅 ∈ Grp) |
isringd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
isringd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
isringd.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
isringd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
isringd.u | ⊢ (𝜑 → 1 ∈ 𝐵) |
isringd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) |
isringd.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) |
iscrngd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
Ref | Expression |
---|---|
iscrngd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isringd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | isringd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝑅)) | |
3 | isringd.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
4 | isringd.g | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
5 | isringd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) | |
6 | isringd.a | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
7 | isringd.d | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
8 | isringd.e | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
9 | isringd.u | . . 3 ⊢ (𝜑 → 1 ∈ 𝐵) | |
10 | isringd.i | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) | |
11 | isringd.h | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | isringd 13537 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | eqid 2193 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
14 | eqid 2193 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | 13, 14 | mgpbasg 13422 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
17 | 1, 16 | eqtrd 2226 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
18 | eqid 2193 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
19 | 13, 18 | mgpplusgg 13420 | . . . . 5 ⊢ (𝑅 ∈ Ring → (.r‘𝑅) = (+g‘(mulGrp‘𝑅))) |
20 | 12, 19 | syl 14 | . . . 4 ⊢ (𝜑 → (.r‘𝑅) = (+g‘(mulGrp‘𝑅))) |
21 | 3, 20 | eqtrd 2226 | . . 3 ⊢ (𝜑 → · = (+g‘(mulGrp‘𝑅))) |
22 | 17, 21, 5, 6, 9, 10, 11 | ismndd 13018 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
23 | iscrngd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
24 | 17, 21, 22, 23 | iscmnd 13368 | . 2 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
25 | 13 | iscrng 13499 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd)) |
26 | 12, 24, 25 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 Grpcgrp 13072 CMndccmn 13354 mulGrpcmgp 13416 Ringcrg 13492 CRingccrg 13493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-cmn 13356 df-mgp 13417 df-ring 13494 df-cring 13495 |
This theorem is referenced by: cncrng 14057 |
Copyright terms: Public domain | W3C validator |