ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrngd GIF version

Theorem iscrngd 13775
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
isringd.b (𝜑𝐵 = (Base‘𝑅))
isringd.p (𝜑+ = (+g𝑅))
isringd.t (𝜑· = (.r𝑅))
isringd.g (𝜑𝑅 ∈ Grp)
isringd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
isringd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
isringd.d ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
isringd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
isringd.u (𝜑1𝐵)
isringd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
isringd.h ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
iscrngd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
Assertion
Ref Expression
iscrngd (𝜑𝑅 ∈ CRing)
Distinct variable groups:   𝑥, 1   𝑥,𝑦,𝑧,𝐵   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   1 (𝑦,𝑧)

Proof of Theorem iscrngd
StepHypRef Expression
1 isringd.b . . 3 (𝜑𝐵 = (Base‘𝑅))
2 isringd.p . . 3 (𝜑+ = (+g𝑅))
3 isringd.t . . 3 (𝜑· = (.r𝑅))
4 isringd.g . . 3 (𝜑𝑅 ∈ Grp)
5 isringd.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
6 isringd.a . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7 isringd.d . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
8 isringd.e . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9 isringd.u . . 3 (𝜑1𝐵)
10 isringd.i . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
11 isringd.h . . 3 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11isringd 13774 . 2 (𝜑𝑅 ∈ Ring)
13 eqid 2204 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
14 eqid 2204 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1513, 14mgpbasg 13659 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
1612, 15syl 14 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
171, 16eqtrd 2237 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝑅)))
18 eqid 2204 . . . . . 6 (.r𝑅) = (.r𝑅)
1913, 18mgpplusgg 13657 . . . . 5 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
2012, 19syl 14 . . . 4 (𝜑 → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
213, 20eqtrd 2237 . . 3 (𝜑· = (+g‘(mulGrp‘𝑅)))
2217, 21, 5, 6, 9, 10, 11ismndd 13240 . . 3 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
23 iscrngd.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2417, 21, 22, 23iscmnd 13605 . 2 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2513iscrng 13736 . 2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd))
2612, 24, 25sylanbrc 417 1 (𝜑𝑅 ∈ CRing)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  Basecbs 12803  +gcplusg 12880  .rcmulr 12881  Grpcgrp 13303  CMndccmn 13591  mulGrpcmgp 13653  Ringcrg 13729  CRingccrg 13730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-plusg 12893  df-mulr 12894  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-cmn 13593  df-mgp 13654  df-ring 13731  df-cring 13732
This theorem is referenced by:  cncrng  14302
  Copyright terms: Public domain W3C validator