| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscrngd | GIF version | ||
| Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| isringd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| isringd.p | ⊢ (𝜑 → + = (+g‘𝑅)) |
| isringd.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
| isringd.g | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| isringd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
| isringd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| isringd.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| isringd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| isringd.u | ⊢ (𝜑 → 1 ∈ 𝐵) |
| isringd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) |
| isringd.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) |
| iscrngd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
| Ref | Expression |
|---|---|
| iscrngd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | isringd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝑅)) | |
| 3 | isringd.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 4 | isringd.g | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 5 | isringd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) | |
| 6 | isringd.a | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
| 7 | isringd.d | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
| 8 | isringd.e | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
| 9 | isringd.u | . . 3 ⊢ (𝜑 → 1 ∈ 𝐵) | |
| 10 | isringd.i | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) | |
| 11 | isringd.h | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | isringd 13888 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 13 | eqid 2206 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 14 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 15 | 13, 14 | mgpbasg 13773 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
| 16 | 12, 15 | syl 14 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
| 17 | 1, 16 | eqtrd 2239 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 18 | eqid 2206 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 19 | 13, 18 | mgpplusgg 13771 | . . . . 5 ⊢ (𝑅 ∈ Ring → (.r‘𝑅) = (+g‘(mulGrp‘𝑅))) |
| 20 | 12, 19 | syl 14 | . . . 4 ⊢ (𝜑 → (.r‘𝑅) = (+g‘(mulGrp‘𝑅))) |
| 21 | 3, 20 | eqtrd 2239 | . . 3 ⊢ (𝜑 → · = (+g‘(mulGrp‘𝑅))) |
| 22 | 17, 21, 5, 6, 9, 10, 11 | ismndd 13354 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 23 | iscrngd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
| 24 | 17, 21, 22, 23 | iscmnd 13719 | . 2 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
| 25 | 13 | iscrng 13850 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd)) |
| 26 | 12, 24, 25 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5285 (class class class)co 5962 Basecbs 12917 +gcplusg 12994 .rcmulr 12995 Grpcgrp 13417 CMndccmn 13705 mulGrpcmgp 13767 Ringcrg 13843 CRingccrg 13844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-plusg 13007 df-mulr 13008 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-cmn 13707 df-mgp 13768 df-ring 13845 df-cring 13846 |
| This theorem is referenced by: cncrng 14416 |
| Copyright terms: Public domain | W3C validator |