ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringmgp GIF version

Theorem ringmgp 13973
Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
ringmgp (𝑅 ∈ Ring → 𝐺 ∈ Mnd)

Proof of Theorem ringmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 ringmgp.g . . 3 𝐺 = (mulGrp‘𝑅)
3 eqid 2229 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2229 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isring 13971 . 2 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp2bi 1037 1 (𝑅 ∈ Ring → 𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Mndcmnd 13457  Grpcgrp 13541  mulGrpcmgp 13891  Ringcrg 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-ring 13969
This theorem is referenced by:  mgpf  13982  ringcl  13984  iscrng2  13986  ringass  13987  ringideu  13988  ringidcl  13991  ringidmlem  13993  ringsrg  14018  unitsubm  14091  invrpropdg  14121  dfrhm2  14126  isrhm2d  14137  subrgcrng  14197  subrgsubm  14206  subrgugrp  14212  issubrg3  14219  cnfldexp  14549
  Copyright terms: Public domain W3C validator