ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexgALT GIF version

Theorem xpexgALT 6228
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4794 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpexgALT ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)

Proof of Theorem xpexgALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunid 3986 . . . 4 𝑦𝐵 {𝑦} = 𝐵
21xpeq2i 4701 . . 3 (𝐴 × 𝑦𝐵 {𝑦}) = (𝐴 × 𝐵)
3 xpiundi 4738 . . 3 (𝐴 × 𝑦𝐵 {𝑦}) = 𝑦𝐵 (𝐴 × {𝑦})
42, 3eqtr3i 2229 . 2 (𝐴 × 𝐵) = 𝑦𝐵 (𝐴 × {𝑦})
5 id 19 . . 3 (𝐵𝑊𝐵𝑊)
6 fconstmpt 4727 . . . . 5 (𝐴 × {𝑦}) = (𝑥𝐴𝑦)
7 mptexg 5819 . . . . 5 (𝐴𝑉 → (𝑥𝐴𝑦) ∈ V)
86, 7eqeltrid 2293 . . . 4 (𝐴𝑉 → (𝐴 × {𝑦}) ∈ V)
98ralrimivw 2581 . . 3 (𝐴𝑉 → ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
10 iunexg 6214 . . 3 ((𝐵𝑊 ∧ ∀𝑦𝐵 (𝐴 × {𝑦}) ∈ V) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
115, 9, 10syl2anr 290 . 2 ((𝐴𝑉𝐵𝑊) → 𝑦𝐵 (𝐴 × {𝑦}) ∈ V)
124, 11eqeltrid 2293 1 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wral 2485  Vcvv 2773  {csn 3635   ciun 3930  cmpt 4110   × cxp 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator