| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexgALT | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4794 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| xpexgALT | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunid 3986 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑦} = 𝐵 | |
| 2 | 1 | xpeq2i 4701 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = (𝐴 × 𝐵) |
| 3 | xpiundi 4738 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) | |
| 4 | 2, 3 | eqtr3i 2229 | . 2 ⊢ (𝐴 × 𝐵) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) |
| 5 | id 19 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑊) | |
| 6 | fconstmpt 4727 | . . . . 5 ⊢ (𝐴 × {𝑦}) = (𝑥 ∈ 𝐴 ↦ 𝑦) | |
| 7 | mptexg 5819 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝑦) ∈ V) | |
| 8 | 6, 7 | eqeltrid 2293 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {𝑦}) ∈ V) |
| 9 | 8 | ralrimivw 2581 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
| 10 | iunexg 6214 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
| 11 | 5, 9, 10 | syl2anr 290 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) |
| 12 | 4, 11 | eqeltrid 2293 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 {csn 3635 ∪ ciun 3930 ↦ cmpt 4110 × cxp 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |