| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpexgALT | GIF version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4777 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| xpexgALT | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iunid 3972 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 {𝑦} = 𝐵 | |
| 2 | 1 | xpeq2i 4684 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = (𝐴 × 𝐵) | 
| 3 | xpiundi 4721 | . . 3 ⊢ (𝐴 × ∪ 𝑦 ∈ 𝐵 {𝑦}) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) | |
| 4 | 2, 3 | eqtr3i 2219 | . 2 ⊢ (𝐴 × 𝐵) = ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) | 
| 5 | id 19 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑊) | |
| 6 | fconstmpt 4710 | . . . . 5 ⊢ (𝐴 × {𝑦}) = (𝑥 ∈ 𝐴 ↦ 𝑦) | |
| 7 | mptexg 5787 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝑦) ∈ V) | |
| 8 | 6, 7 | eqeltrid 2283 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {𝑦}) ∈ V) | 
| 9 | 8 | ralrimivw 2571 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | 
| 10 | iunexg 6176 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | |
| 11 | 5, 9, 10 | syl2anr 290 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ∈ V) | 
| 12 | 4, 11 | eqeltrid 2283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 {csn 3622 ∪ ciun 3916 ↦ cmpt 4094 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |