Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > m1expeven | GIF version |
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.) |
Ref | Expression |
---|---|
m1expeven | ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9196 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | 2timesd 9099 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁)) |
3 | 2 | oveq2d 5858 | . 2 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁))) |
4 | neg1cn 8962 | . . . 4 ⊢ -1 ∈ ℂ | |
5 | neg1ap0 8966 | . . . 4 ⊢ -1 # 0 | |
6 | expaddzap 10499 | . . . 4 ⊢ (((-1 ∈ ℂ ∧ -1 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) | |
7 | 4, 5, 6 | mpanl12 433 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
8 | 7 | anidms 395 | . 2 ⊢ (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
9 | m1expcl2 10477 | . . 3 ⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1}) | |
10 | neg1rr 8963 | . . . . . 6 ⊢ -1 ∈ ℝ | |
11 | reexpclzap 10475 | . . . . . 6 ⊢ ((-1 ∈ ℝ ∧ -1 # 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ) | |
12 | 10, 5, 11 | mp3an12 1317 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℝ) |
13 | elprg 3596 | . . . . 5 ⊢ ((-1↑𝑁) ∈ ℝ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))) | |
14 | 12, 13 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))) |
15 | oveq12 5851 | . . . . . . 7 ⊢ (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1)) | |
16 | 15 | anidms 395 | . . . . . 6 ⊢ ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1)) |
17 | neg1mulneg1e1 9069 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
18 | 16, 17 | eqtrdi 2215 | . . . . 5 ⊢ ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
19 | oveq12 5851 | . . . . . . 7 ⊢ (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1)) | |
20 | 19 | anidms 395 | . . . . . 6 ⊢ ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1)) |
21 | 1t1e1 9009 | . . . . . 6 ⊢ (1 · 1) = 1 | |
22 | 20, 21 | eqtrdi 2215 | . . . . 5 ⊢ ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
23 | 18, 22 | jaoi 706 | . . . 4 ⊢ (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
24 | 14, 23 | syl6bi 162 | . . 3 ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1)) |
25 | 9, 24 | mpd 13 | . 2 ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
26 | 3, 8, 25 | 3eqtrd 2202 | 1 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 {cpr 3577 class class class wbr 3982 (class class class)co 5842 ℂcc 7751 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 -cneg 8070 # cap 8479 2c2 8908 ℤcz 9191 ↑cexp 10454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: m1expe 11836 m1expo 11837 m1exp1 11838 |
Copyright terms: Public domain | W3C validator |