ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expeven GIF version

Theorem m1expeven 10564
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
m1expeven (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)

Proof of Theorem m1expeven
StepHypRef Expression
1 zcn 9256 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
212timesd 9159 . . 3 (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁))
32oveq2d 5890 . 2 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
4 neg1cn 9022 . . . 4 -1 ∈ ℂ
5 neg1ap0 9026 . . . 4 -1 # 0
6 expaddzap 10561 . . . 4 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
74, 5, 6mpanl12 436 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
87anidms 397 . 2 (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
9 m1expcl2 10539 . . 3 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
10 neg1rr 9023 . . . . . 6 -1 ∈ ℝ
11 reexpclzap 10537 . . . . . 6 ((-1 ∈ ℝ ∧ -1 # 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ)
1210, 5, 11mp3an12 1327 . . . . 5 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℝ)
13 elprg 3612 . . . . 5 ((-1↑𝑁) ∈ ℝ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
1412, 13syl 14 . . . 4 (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
15 oveq12 5883 . . . . . . 7 (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
1615anidms 397 . . . . . 6 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
17 neg1mulneg1e1 9129 . . . . . 6 (-1 · -1) = 1
1816, 17eqtrdi 2226 . . . . 5 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
19 oveq12 5883 . . . . . . 7 (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
2019anidms 397 . . . . . 6 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
21 1t1e1 9069 . . . . . 6 (1 · 1) = 1
2220, 21eqtrdi 2226 . . . . 5 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2318, 22jaoi 716 . . . 4 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2414, 23syl6bi 163 . . 3 (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1))
259, 24mpd 13 . 2 (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1)
263, 8, 253eqtrd 2214 1 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  {cpr 3593   class class class wbr 4003  (class class class)co 5874  cc 7808  cr 7809  0cc0 7810  1c1 7811   + caddc 7813   · cmul 7815  -cneg 8127   # cap 8536  2c2 8968  cz 9251  cexp 10516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-uz 9527  df-seqfrec 10443  df-exp 10517
This theorem is referenced by:  m1expe  11898  m1expo  11899  m1exp1  11900
  Copyright terms: Public domain W3C validator