| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > m1expeven | GIF version | ||
| Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| m1expeven | ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9447 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | 2timesd 9350 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁)) |
| 3 | 2 | oveq2d 6016 | . 2 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁))) |
| 4 | neg1cn 9211 | . . . 4 ⊢ -1 ∈ ℂ | |
| 5 | neg1ap0 9215 | . . . 4 ⊢ -1 # 0 | |
| 6 | expaddzap 10800 | . . . 4 ⊢ (((-1 ∈ ℂ ∧ -1 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) | |
| 7 | 4, 5, 6 | mpanl12 436 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 8 | 7 | anidms 397 | . 2 ⊢ (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 9 | m1expcl2 10778 | . . 3 ⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1}) | |
| 10 | neg1rr 9212 | . . . . . 6 ⊢ -1 ∈ ℝ | |
| 11 | reexpclzap 10776 | . . . . . 6 ⊢ ((-1 ∈ ℝ ∧ -1 # 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ) | |
| 12 | 10, 5, 11 | mp3an12 1361 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℝ) |
| 13 | elprg 3686 | . . . . 5 ⊢ ((-1↑𝑁) ∈ ℝ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))) | |
| 14 | 12, 13 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))) |
| 15 | oveq12 6009 | . . . . . . 7 ⊢ (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1)) | |
| 16 | 15 | anidms 397 | . . . . . 6 ⊢ ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1)) |
| 17 | neg1mulneg1e1 9319 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 18 | 16, 17 | eqtrdi 2278 | . . . . 5 ⊢ ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 19 | oveq12 6009 | . . . . . . 7 ⊢ (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1)) | |
| 20 | 19 | anidms 397 | . . . . . 6 ⊢ ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1)) |
| 21 | 1t1e1 9259 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 22 | 20, 21 | eqtrdi 2278 | . . . . 5 ⊢ ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 23 | 18, 22 | jaoi 721 | . . . 4 ⊢ (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 24 | 14, 23 | biimtrdi 163 | . . 3 ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1)) |
| 25 | 9, 24 | mpd 13 | . 2 ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 26 | 3, 8, 25 | 3eqtrd 2266 | 1 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {cpr 3667 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 ℝcr 7994 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 -cneg 8314 # cap 8724 2c2 9157 ℤcz 9442 ↑cexp 10755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-exp 10756 |
| This theorem is referenced by: m1expe 12405 m1expo 12406 m1exp1 12407 gausslemma2d 15742 |
| Copyright terms: Public domain | W3C validator |