ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expeven GIF version

Theorem m1expeven 10748
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
m1expeven (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)

Proof of Theorem m1expeven
StepHypRef Expression
1 zcn 9392 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
212timesd 9295 . . 3 (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁))
32oveq2d 5972 . 2 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
4 neg1cn 9156 . . . 4 -1 ∈ ℂ
5 neg1ap0 9160 . . . 4 -1 # 0
6 expaddzap 10745 . . . 4 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
74, 5, 6mpanl12 436 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
87anidms 397 . 2 (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
9 m1expcl2 10723 . . 3 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
10 neg1rr 9157 . . . . . 6 -1 ∈ ℝ
11 reexpclzap 10721 . . . . . 6 ((-1 ∈ ℝ ∧ -1 # 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ)
1210, 5, 11mp3an12 1340 . . . . 5 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℝ)
13 elprg 3657 . . . . 5 ((-1↑𝑁) ∈ ℝ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
1412, 13syl 14 . . . 4 (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)))
15 oveq12 5965 . . . . . . 7 (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
1615anidms 397 . . . . . 6 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
17 neg1mulneg1e1 9264 . . . . . 6 (-1 · -1) = 1
1816, 17eqtrdi 2255 . . . . 5 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
19 oveq12 5965 . . . . . . 7 (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
2019anidms 397 . . . . . 6 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
21 1t1e1 9204 . . . . . 6 (1 · 1) = 1
2220, 21eqtrdi 2255 . . . . 5 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2318, 22jaoi 718 . . . 4 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2414, 23biimtrdi 163 . . 3 (𝑁 ∈ ℤ → ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1))
259, 24mpd 13 . 2 (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1)
263, 8, 253eqtrd 2243 1 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  {cpr 3638   class class class wbr 4050  (class class class)co 5956  cc 7938  cr 7939  0cc0 7940  1c1 7941   + caddc 7943   · cmul 7945  -cneg 8259   # cap 8669  2c2 9102  cz 9387  cexp 10700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-seqfrec 10610  df-exp 10701
This theorem is referenced by:  m1expe  12280  m1expo  12281  m1exp1  12282  gausslemma2d  15616
  Copyright terms: Public domain W3C validator