Step | Hyp | Ref
| Expression |
1 | | nq0nn 7404 |
. 2
⊢ (𝐴 ∈
Q0 → ∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0
)) |
2 | | df-0nq0 7388 |
. . . . . 6
⊢
0Q0 = [〈∅, 1o〉]
~Q0 |
3 | | oveq12 5862 |
. . . . . 6
⊢
((0Q0 = [〈∅, 1o〉]
~Q0 ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0 ) →
(0Q0 ·Q0 𝐴) = ([〈∅,
1o〉] ~Q0
·Q0 [〈𝑤, 𝑣〉] ~Q0
)) |
4 | 2, 3 | mpan 422 |
. . . . 5
⊢ (𝐴 = [〈𝑤, 𝑣〉] ~Q0 →
(0Q0 ·Q0 𝐴) = ([〈∅,
1o〉] ~Q0
·Q0 [〈𝑤, 𝑣〉] ~Q0
)) |
5 | | peano1 4578 |
. . . . . 6
⊢ ∅
∈ ω |
6 | | 1pi 7277 |
. . . . . 6
⊢
1o ∈ N |
7 | | mulnnnq0 7412 |
. . . . . 6
⊢
(((∅ ∈ ω ∧ 1o ∈ N)
∧ (𝑤 ∈ ω
∧ 𝑣 ∈
N)) → ([〈∅, 1o〉]
~Q0 ·Q0 [〈𝑤, 𝑣〉] ~Q0 ) =
[〈(∅ ·o 𝑤), (1o ·o 𝑣)〉]
~Q0 ) |
8 | 5, 6, 7 | mpanl12 434 |
. . . . 5
⊢ ((𝑤 ∈ ω ∧ 𝑣 ∈ N) →
([〈∅, 1o〉] ~Q0
·Q0 [〈𝑤, 𝑣〉] ~Q0 ) =
[〈(∅ ·o 𝑤), (1o ·o 𝑣)〉]
~Q0 ) |
9 | 4, 8 | sylan9eqr 2225 |
. . . 4
⊢ (((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q0 ) →
(0Q0 ·Q0 𝐴) = [〈(∅
·o 𝑤),
(1o ·o 𝑣)〉] ~Q0
) |
10 | | nnm0r 6458 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ω → (∅
·o 𝑤) =
∅) |
11 | 10 | oveq1d 5868 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ω → ((∅
·o 𝑤)
·o 1o) = (∅ ·o
1o)) |
12 | | 1onn 6499 |
. . . . . . . . . . 11
⊢
1o ∈ ω |
13 | | nnm0r 6458 |
. . . . . . . . . . 11
⊢
(1o ∈ ω → (∅ ·o
1o) = ∅) |
14 | 12, 13 | ax-mp 5 |
. . . . . . . . . 10
⊢ (∅
·o 1o) = ∅ |
15 | 11, 14 | eqtrdi 2219 |
. . . . . . . . 9
⊢ (𝑤 ∈ ω → ((∅
·o 𝑤)
·o 1o) = ∅) |
16 | 15 | adantr 274 |
. . . . . . . 8
⊢ ((𝑤 ∈ ω ∧ 𝑣 ∈ N) →
((∅ ·o 𝑤) ·o 1o) =
∅) |
17 | | mulpiord 7279 |
. . . . . . . . . . . 12
⊢
((1o ∈ N ∧ 𝑣 ∈ N) →
(1o ·N 𝑣) = (1o ·o 𝑣)) |
18 | | mulclpi 7290 |
. . . . . . . . . . . 12
⊢
((1o ∈ N ∧ 𝑣 ∈ N) →
(1o ·N 𝑣) ∈ N) |
19 | 17, 18 | eqeltrrd 2248 |
. . . . . . . . . . 11
⊢
((1o ∈ N ∧ 𝑣 ∈ N) →
(1o ·o 𝑣) ∈ N) |
20 | 6, 19 | mpan 422 |
. . . . . . . . . 10
⊢ (𝑣 ∈ N →
(1o ·o 𝑣) ∈ N) |
21 | | pinn 7271 |
. . . . . . . . . 10
⊢
((1o ·o 𝑣) ∈ N →
(1o ·o 𝑣) ∈ ω) |
22 | | nnm0 6454 |
. . . . . . . . . 10
⊢
((1o ·o 𝑣) ∈ ω → ((1o
·o 𝑣)
·o ∅) = ∅) |
23 | 20, 21, 22 | 3syl 17 |
. . . . . . . . 9
⊢ (𝑣 ∈ N →
((1o ·o 𝑣) ·o ∅) =
∅) |
24 | 23 | adantl 275 |
. . . . . . . 8
⊢ ((𝑤 ∈ ω ∧ 𝑣 ∈ N) →
((1o ·o 𝑣) ·o ∅) =
∅) |
25 | 16, 24 | eqtr4d 2206 |
. . . . . . 7
⊢ ((𝑤 ∈ ω ∧ 𝑣 ∈ N) →
((∅ ·o 𝑤) ·o 1o) =
((1o ·o 𝑣) ·o
∅)) |
26 | 10, 5 | eqeltrdi 2261 |
. . . . . . . 8
⊢ (𝑤 ∈ ω → (∅
·o 𝑤)
∈ ω) |
27 | | enq0eceq 7399 |
. . . . . . . . 9
⊢
((((∅ ·o 𝑤) ∈ ω ∧ (1o
·o 𝑣)
∈ N) ∧ (∅ ∈ ω ∧ 1o
∈ N)) → ([〈(∅ ·o 𝑤), (1o
·o 𝑣)〉] ~Q0 =
[〈∅, 1o〉] ~Q0 ↔
((∅ ·o 𝑤) ·o 1o) =
((1o ·o 𝑣) ·o
∅))) |
28 | 5, 6, 27 | mpanr12 437 |
. . . . . . . 8
⊢
(((∅ ·o 𝑤) ∈ ω ∧ (1o
·o 𝑣)
∈ N) → ([〈(∅ ·o 𝑤), (1o
·o 𝑣)〉] ~Q0 =
[〈∅, 1o〉] ~Q0 ↔
((∅ ·o 𝑤) ·o 1o) =
((1o ·o 𝑣) ·o
∅))) |
29 | 26, 20, 28 | syl2an 287 |
. . . . . . 7
⊢ ((𝑤 ∈ ω ∧ 𝑣 ∈ N) →
([〈(∅ ·o 𝑤), (1o ·o 𝑣)〉]
~Q0 = [〈∅, 1o〉]
~Q0 ↔ ((∅ ·o 𝑤) ·o
1o) = ((1o ·o 𝑣) ·o
∅))) |
30 | 25, 29 | mpbird 166 |
. . . . . 6
⊢ ((𝑤 ∈ ω ∧ 𝑣 ∈ N) →
[〈(∅ ·o 𝑤), (1o ·o 𝑣)〉]
~Q0 = [〈∅, 1o〉]
~Q0 ) |
31 | 30, 2 | eqtr4di 2221 |
. . . . 5
⊢ ((𝑤 ∈ ω ∧ 𝑣 ∈ N) →
[〈(∅ ·o 𝑤), (1o ·o 𝑣)〉]
~Q0 = 0Q0) |
32 | 31 | adantr 274 |
. . . 4
⊢ (((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q0 ) →
[〈(∅ ·o 𝑤), (1o ·o 𝑣)〉]
~Q0 = 0Q0) |
33 | 9, 32 | eqtrd 2203 |
. . 3
⊢ (((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧
𝐴 = [〈𝑤, 𝑣〉] ~Q0 ) →
(0Q0 ·Q0 𝐴) =
0Q0) |
34 | 33 | exlimivv 1889 |
. 2
⊢
(∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0 ) →
(0Q0 ·Q0 𝐴) =
0Q0) |
35 | 1, 34 | syl 14 |
1
⊢ (𝐴 ∈
Q0 → (0Q0
·Q0 𝐴) =
0Q0) |