ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0m0r GIF version

Theorem nq0m0r 7484
Description: Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0m0r (𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)

Proof of Theorem nq0m0r
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7470 . 2 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2 df-0nq0 7454 . . . . . 6 0Q0 = [⟨∅, 1o⟩] ~Q0
3 oveq12 5904 . . . . . 6 ((0Q0 = [⟨∅, 1o⟩] ~Q0𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ))
42, 3mpan 424 . . . . 5 (𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 → (0Q0 ·Q0 𝐴) = ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ))
5 peano1 4611 . . . . . 6 ∅ ∈ ω
6 1pi 7343 . . . . . 6 1oN
7 mulnnnq0 7478 . . . . . 6 (((∅ ∈ ω ∧ 1oN) ∧ (𝑤 ∈ ω ∧ 𝑣N)) → ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
85, 6, 7mpanl12 436 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
94, 8sylan9eqr 2244 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
10 nnm0r 6503 . . . . . . . . . . 11 (𝑤 ∈ ω → (∅ ·o 𝑤) = ∅)
1110oveq1d 5910 . . . . . . . . . 10 (𝑤 ∈ ω → ((∅ ·o 𝑤) ·o 1o) = (∅ ·o 1o))
12 1onn 6544 . . . . . . . . . . 11 1o ∈ ω
13 nnm0r 6503 . . . . . . . . . . 11 (1o ∈ ω → (∅ ·o 1o) = ∅)
1412, 13ax-mp 5 . . . . . . . . . 10 (∅ ·o 1o) = ∅
1511, 14eqtrdi 2238 . . . . . . . . 9 (𝑤 ∈ ω → ((∅ ·o 𝑤) ·o 1o) = ∅)
1615adantr 276 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((∅ ·o 𝑤) ·o 1o) = ∅)
17 mulpiord 7345 . . . . . . . . . . . 12 ((1oN𝑣N) → (1o ·N 𝑣) = (1o ·o 𝑣))
18 mulclpi 7356 . . . . . . . . . . . 12 ((1oN𝑣N) → (1o ·N 𝑣) ∈ N)
1917, 18eqeltrrd 2267 . . . . . . . . . . 11 ((1oN𝑣N) → (1o ·o 𝑣) ∈ N)
206, 19mpan 424 . . . . . . . . . 10 (𝑣N → (1o ·o 𝑣) ∈ N)
21 pinn 7337 . . . . . . . . . 10 ((1o ·o 𝑣) ∈ N → (1o ·o 𝑣) ∈ ω)
22 nnm0 6499 . . . . . . . . . 10 ((1o ·o 𝑣) ∈ ω → ((1o ·o 𝑣) ·o ∅) = ∅)
2320, 21, 223syl 17 . . . . . . . . 9 (𝑣N → ((1o ·o 𝑣) ·o ∅) = ∅)
2423adantl 277 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((1o ·o 𝑣) ·o ∅) = ∅)
2516, 24eqtr4d 2225 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅))
2610, 5eqeltrdi 2280 . . . . . . . 8 (𝑤 ∈ ω → (∅ ·o 𝑤) ∈ ω)
27 enq0eceq 7465 . . . . . . . . 9 ((((∅ ·o 𝑤) ∈ ω ∧ (1o ·o 𝑣) ∈ N) ∧ (∅ ∈ ω ∧ 1oN)) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
285, 6, 27mpanr12 439 . . . . . . . 8 (((∅ ·o 𝑤) ∈ ω ∧ (1o ·o 𝑣) ∈ N) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
2926, 20, 28syl2an 289 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
3025, 29mpbird 167 . . . . . 6 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 )
3130, 2eqtr4di 2240 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = 0Q0)
3231adantr 276 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = 0Q0)
339, 32eqtrd 2222 . . 3 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = 0Q0)
3433exlimivv 1908 . 2 (∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = 0Q0)
351, 34syl 14 1 (𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2160  c0 3437  cop 3610  ωcom 4607  (class class class)co 5895  1oc1o 6433   ·o comu 6438  [cec 6556  Ncnpi 7300   ·N cmi 7302   ~Q0 ceq0 7314  Q0cnq0 7315  0Q0c0q0 7316   ·Q0 cmq0 7318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-1o 6440  df-oadd 6444  df-omul 6445  df-er 6558  df-ec 6560  df-qs 6564  df-ni 7332  df-mi 7334  df-enq0 7452  df-nq0 7453  df-0nq0 7454  df-mq0 7456
This theorem is referenced by:  prarloclem5  7528
  Copyright terms: Public domain W3C validator