ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0m0r GIF version

Theorem nq0m0r 7446
Description: Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0m0r (𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)

Proof of Theorem nq0m0r
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7432 . 2 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2 df-0nq0 7416 . . . . . 6 0Q0 = [⟨∅, 1o⟩] ~Q0
3 oveq12 5878 . . . . . 6 ((0Q0 = [⟨∅, 1o⟩] ~Q0𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ))
42, 3mpan 424 . . . . 5 (𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 → (0Q0 ·Q0 𝐴) = ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ))
5 peano1 4590 . . . . . 6 ∅ ∈ ω
6 1pi 7305 . . . . . 6 1oN
7 mulnnnq0 7440 . . . . . 6 (((∅ ∈ ω ∧ 1oN) ∧ (𝑤 ∈ ω ∧ 𝑣N)) → ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
85, 6, 7mpanl12 436 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
94, 8sylan9eqr 2232 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
10 nnm0r 6474 . . . . . . . . . . 11 (𝑤 ∈ ω → (∅ ·o 𝑤) = ∅)
1110oveq1d 5884 . . . . . . . . . 10 (𝑤 ∈ ω → ((∅ ·o 𝑤) ·o 1o) = (∅ ·o 1o))
12 1onn 6515 . . . . . . . . . . 11 1o ∈ ω
13 nnm0r 6474 . . . . . . . . . . 11 (1o ∈ ω → (∅ ·o 1o) = ∅)
1412, 13ax-mp 5 . . . . . . . . . 10 (∅ ·o 1o) = ∅
1511, 14eqtrdi 2226 . . . . . . . . 9 (𝑤 ∈ ω → ((∅ ·o 𝑤) ·o 1o) = ∅)
1615adantr 276 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((∅ ·o 𝑤) ·o 1o) = ∅)
17 mulpiord 7307 . . . . . . . . . . . 12 ((1oN𝑣N) → (1o ·N 𝑣) = (1o ·o 𝑣))
18 mulclpi 7318 . . . . . . . . . . . 12 ((1oN𝑣N) → (1o ·N 𝑣) ∈ N)
1917, 18eqeltrrd 2255 . . . . . . . . . . 11 ((1oN𝑣N) → (1o ·o 𝑣) ∈ N)
206, 19mpan 424 . . . . . . . . . 10 (𝑣N → (1o ·o 𝑣) ∈ N)
21 pinn 7299 . . . . . . . . . 10 ((1o ·o 𝑣) ∈ N → (1o ·o 𝑣) ∈ ω)
22 nnm0 6470 . . . . . . . . . 10 ((1o ·o 𝑣) ∈ ω → ((1o ·o 𝑣) ·o ∅) = ∅)
2320, 21, 223syl 17 . . . . . . . . 9 (𝑣N → ((1o ·o 𝑣) ·o ∅) = ∅)
2423adantl 277 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((1o ·o 𝑣) ·o ∅) = ∅)
2516, 24eqtr4d 2213 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅))
2610, 5eqeltrdi 2268 . . . . . . . 8 (𝑤 ∈ ω → (∅ ·o 𝑤) ∈ ω)
27 enq0eceq 7427 . . . . . . . . 9 ((((∅ ·o 𝑤) ∈ ω ∧ (1o ·o 𝑣) ∈ N) ∧ (∅ ∈ ω ∧ 1oN)) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
285, 6, 27mpanr12 439 . . . . . . . 8 (((∅ ·o 𝑤) ∈ ω ∧ (1o ·o 𝑣) ∈ N) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
2926, 20, 28syl2an 289 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
3025, 29mpbird 167 . . . . . 6 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 )
3130, 2eqtr4di 2228 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = 0Q0)
3231adantr 276 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = 0Q0)
339, 32eqtrd 2210 . . 3 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = 0Q0)
3433exlimivv 1896 . 2 (∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = 0Q0)
351, 34syl 14 1 (𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  c0 3422  cop 3594  ωcom 4586  (class class class)co 5869  1oc1o 6404   ·o comu 6409  [cec 6527  Ncnpi 7262   ·N cmi 7264   ~Q0 ceq0 7276  Q0cnq0 7277  0Q0c0q0 7278   ·Q0 cmq0 7280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-mq0 7418
This theorem is referenced by:  prarloclem5  7490
  Copyright terms: Public domain W3C validator