ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0m0r GIF version

Theorem nq0m0r 7516
Description: Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0m0r (𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)

Proof of Theorem nq0m0r
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7502 . 2 (𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
2 df-0nq0 7486 . . . . . 6 0Q0 = [⟨∅, 1o⟩] ~Q0
3 oveq12 5927 . . . . . 6 ((0Q0 = [⟨∅, 1o⟩] ~Q0𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ))
42, 3mpan 424 . . . . 5 (𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 → (0Q0 ·Q0 𝐴) = ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ))
5 peano1 4626 . . . . . 6 ∅ ∈ ω
6 1pi 7375 . . . . . 6 1oN
7 mulnnnq0 7510 . . . . . 6 (((∅ ∈ ω ∧ 1oN) ∧ (𝑤 ∈ ω ∧ 𝑣N)) → ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
85, 6, 7mpanl12 436 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨∅, 1o⟩] ~Q0 ·Q0 [⟨𝑤, 𝑣⟩] ~Q0 ) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
94, 8sylan9eqr 2248 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 )
10 nnm0r 6532 . . . . . . . . . . 11 (𝑤 ∈ ω → (∅ ·o 𝑤) = ∅)
1110oveq1d 5933 . . . . . . . . . 10 (𝑤 ∈ ω → ((∅ ·o 𝑤) ·o 1o) = (∅ ·o 1o))
12 1onn 6573 . . . . . . . . . . 11 1o ∈ ω
13 nnm0r 6532 . . . . . . . . . . 11 (1o ∈ ω → (∅ ·o 1o) = ∅)
1412, 13ax-mp 5 . . . . . . . . . 10 (∅ ·o 1o) = ∅
1511, 14eqtrdi 2242 . . . . . . . . 9 (𝑤 ∈ ω → ((∅ ·o 𝑤) ·o 1o) = ∅)
1615adantr 276 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((∅ ·o 𝑤) ·o 1o) = ∅)
17 mulpiord 7377 . . . . . . . . . . . 12 ((1oN𝑣N) → (1o ·N 𝑣) = (1o ·o 𝑣))
18 mulclpi 7388 . . . . . . . . . . . 12 ((1oN𝑣N) → (1o ·N 𝑣) ∈ N)
1917, 18eqeltrrd 2271 . . . . . . . . . . 11 ((1oN𝑣N) → (1o ·o 𝑣) ∈ N)
206, 19mpan 424 . . . . . . . . . 10 (𝑣N → (1o ·o 𝑣) ∈ N)
21 pinn 7369 . . . . . . . . . 10 ((1o ·o 𝑣) ∈ N → (1o ·o 𝑣) ∈ ω)
22 nnm0 6528 . . . . . . . . . 10 ((1o ·o 𝑣) ∈ ω → ((1o ·o 𝑣) ·o ∅) = ∅)
2320, 21, 223syl 17 . . . . . . . . 9 (𝑣N → ((1o ·o 𝑣) ·o ∅) = ∅)
2423adantl 277 . . . . . . . 8 ((𝑤 ∈ ω ∧ 𝑣N) → ((1o ·o 𝑣) ·o ∅) = ∅)
2516, 24eqtr4d 2229 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅))
2610, 5eqeltrdi 2284 . . . . . . . 8 (𝑤 ∈ ω → (∅ ·o 𝑤) ∈ ω)
27 enq0eceq 7497 . . . . . . . . 9 ((((∅ ·o 𝑤) ∈ ω ∧ (1o ·o 𝑣) ∈ N) ∧ (∅ ∈ ω ∧ 1oN)) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
285, 6, 27mpanr12 439 . . . . . . . 8 (((∅ ·o 𝑤) ∈ ω ∧ (1o ·o 𝑣) ∈ N) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
2926, 20, 28syl2an 289 . . . . . . 7 ((𝑤 ∈ ω ∧ 𝑣N) → ([⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 ↔ ((∅ ·o 𝑤) ·o 1o) = ((1o ·o 𝑣) ·o ∅)))
3025, 29mpbird 167 . . . . . 6 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = [⟨∅, 1o⟩] ~Q0 )
3130, 2eqtr4di 2244 . . . . 5 ((𝑤 ∈ ω ∧ 𝑣N) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = 0Q0)
3231adantr 276 . . . 4 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → [⟨(∅ ·o 𝑤), (1o ·o 𝑣)⟩] ~Q0 = 0Q0)
339, 32eqtrd 2226 . . 3 (((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = 0Q0)
3433exlimivv 1908 . 2 (∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ) → (0Q0 ·Q0 𝐴) = 0Q0)
351, 34syl 14 1 (𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  c0 3446  cop 3621  ωcom 4622  (class class class)co 5918  1oc1o 6462   ·o comu 6467  [cec 6585  Ncnpi 7332   ·N cmi 7334   ~Q0 ceq0 7346  Q0cnq0 7347  0Q0c0q0 7348   ·Q0 cmq0 7350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-mq0 7488
This theorem is referenced by:  prarloclem5  7560
  Copyright terms: Public domain W3C validator