ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgtge0 GIF version

Theorem addgtge0 8565
Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addgtge0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵))

Proof of Theorem addgtge0
StepHypRef Expression
1 00id 8255 . 2 (0 + 0) = 0
2 0re 8114 . . . 4 0 ∈ ℝ
3 ltleadd 8561 . . . 4 (((0 ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((0 < 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) < (𝐴 + 𝐵)))
42, 2, 3mpanl12 436 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) < (𝐴 + 𝐵)))
54imp 124 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → (0 + 0) < (𝐴 + 𝐵))
61, 5eqbrtrrid 4098 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2180   class class class wbr 4062  (class class class)co 5974  cr 7966  0cc0 7967   + caddc 7970   < clt 8149  cle 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0id 8075  ax-rnegex 8076  ax-pre-ltwlin 8080  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-cnv 4704  df-iota 5254  df-fv 5302  df-ov 5977  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155
This theorem is referenced by:  addgtge0d  8635  recexaplem2  8767  recp1lt1  9014  resqrexlem1arp  11482  resqrexlemp1rp  11483  resqrexlemglsq  11499
  Copyright terms: Public domain W3C validator