| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addgtge0 | GIF version | ||
| Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| addgtge0 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 00id 8255 | . 2 ⊢ (0 + 0) = 0 | |
| 2 | 0re 8114 | . . . 4 ⊢ 0 ∈ ℝ | |
| 3 | ltleadd 8561 | . . . 4 ⊢ (((0 ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((0 < 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) < (𝐴 + 𝐵))) | |
| 4 | 2, 2, 3 | mpanl12 436 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) < (𝐴 + 𝐵))) |
| 5 | 4 | imp 124 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → (0 + 0) < (𝐴 + 𝐵)) |
| 6 | 1, 5 | eqbrtrrid 4098 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 ℝcr 7966 0cc0 7967 + caddc 7970 < clt 8149 ≤ cle 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0id 8075 ax-rnegex 8076 ax-pre-ltwlin 8080 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-cnv 4704 df-iota 5254 df-fv 5302 df-ov 5977 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 |
| This theorem is referenced by: addgtge0d 8635 recexaplem2 8767 recp1lt1 9014 resqrexlem1arp 11482 resqrexlemp1rp 11483 resqrexlemglsq 11499 |
| Copyright terms: Public domain | W3C validator |