Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addgtge0 | GIF version |
Description: The sum of nonnegative and positive numbers is positive. (Contributed by NM, 28-Dec-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
addgtge0 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 00id 8016 | . 2 ⊢ (0 + 0) = 0 | |
2 | 0re 7878 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | ltleadd 8321 | . . . 4 ⊢ (((0 ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((0 < 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) < (𝐴 + 𝐵))) | |
4 | 2, 2, 3 | mpanl12 433 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) < (𝐴 + 𝐵))) |
5 | 4 | imp 123 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → (0 + 0) < (𝐴 + 𝐵)) |
6 | 1, 5 | eqbrtrrid 4000 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 class class class wbr 3965 (class class class)co 5824 ℝcr 7731 0cc0 7732 + caddc 7735 < clt 7912 ≤ cle 7913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-addcom 7832 ax-addass 7834 ax-i2m1 7837 ax-0id 7840 ax-rnegex 7841 ax-pre-ltwlin 7845 ax-pre-ltadd 7848 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4592 df-cnv 4594 df-iota 5135 df-fv 5178 df-ov 5827 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 |
This theorem is referenced by: addgtge0d 8395 recexaplem2 8526 recp1lt1 8770 resqrexlem1arp 10905 resqrexlemp1rp 10906 resqrexlemglsq 10922 |
Copyright terms: Public domain | W3C validator |