ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addge0 GIF version

Theorem addge0 8225
Description: The sum of 2 nonnegative numbers is nonnegative. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
addge0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))

Proof of Theorem addge0
StepHypRef Expression
1 00id 7915 . 2 (0 + 0) = 0
2 0re 7778 . . . 4 0 ∈ ℝ
3 le2add 8218 . . . 4 (((0 ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) ≤ (𝐴 + 𝐵)))
42, 2, 3mpanl12 432 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (0 + 0) ≤ (𝐴 + 𝐵)))
54imp 123 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → (0 + 0) ≤ (𝐴 + 𝐵))
61, 5eqbrtrrid 3964 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7631  0cc0 7632   + caddc 7635  cle 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-i2m1 7737  ax-0id 7740  ax-rnegex 7741  ax-pre-ltwlin 7745  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-iota 5088  df-fv 5131  df-ov 5777  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818
This theorem is referenced by:  addge0i  8263  addge0d  8296  ge0addcl  9776  amgm2  10902
  Copyright terms: Public domain W3C validator