ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccshftri GIF version

Theorem iccshftri 9778
Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccshftri.1 𝐴 ∈ ℝ
iccshftri.2 𝐵 ∈ ℝ
iccshftri.3 𝑅 ∈ ℝ
iccshftri.4 (𝐴 + 𝑅) = 𝐶
iccshftri.5 (𝐵 + 𝑅) = 𝐷
Assertion
Ref Expression
iccshftri (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))

Proof of Theorem iccshftri
StepHypRef Expression
1 iccshftri.1 . . . 4 𝐴 ∈ ℝ
2 iccshftri.2 . . . 4 𝐵 ∈ ℝ
3 iccssre 9738 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3mp2an 422 . . 3 (𝐴[,]𝐵) ⊆ ℝ
54sseli 3093 . 2 (𝑋 ∈ (𝐴[,]𝐵) → 𝑋 ∈ ℝ)
6 iccshftri.3 . . . 4 𝑅 ∈ ℝ
7 iccshftri.4 . . . . . 6 (𝐴 + 𝑅) = 𝐶
8 iccshftri.5 . . . . . 6 (𝐵 + 𝑅) = 𝐷
97, 8iccshftr 9777 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
101, 2, 9mpanl12 432 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
116, 10mpan2 421 . . 3 (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
1211biimpd 143 . 2 (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)))
135, 12mpcom 36 1 (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wss 3071  (class class class)co 5774  cr 7619   + caddc 7623  [,]cicc 9674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-icc 9678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator