| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccshftri | GIF version | ||
| Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| iccshftri.1 | ⊢ 𝐴 ∈ ℝ |
| iccshftri.2 | ⊢ 𝐵 ∈ ℝ |
| iccshftri.3 | ⊢ 𝑅 ∈ ℝ |
| iccshftri.4 | ⊢ (𝐴 + 𝑅) = 𝐶 |
| iccshftri.5 | ⊢ (𝐵 + 𝑅) = 𝐷 |
| Ref | Expression |
|---|---|
| iccshftri | ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccshftri.1 | . . . 4 ⊢ 𝐴 ∈ ℝ | |
| 2 | iccshftri.2 | . . . 4 ⊢ 𝐵 ∈ ℝ | |
| 3 | iccssre 10076 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 426 | . . 3 ⊢ (𝐴[,]𝐵) ⊆ ℝ |
| 5 | 4 | sseli 3188 | . 2 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → 𝑋 ∈ ℝ) |
| 6 | iccshftri.3 | . . . 4 ⊢ 𝑅 ∈ ℝ | |
| 7 | iccshftri.4 | . . . . . 6 ⊢ (𝐴 + 𝑅) = 𝐶 | |
| 8 | iccshftri.5 | . . . . . 6 ⊢ (𝐵 + 𝑅) = 𝐷 | |
| 9 | 7, 8 | iccshftr 10115 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) |
| 10 | 1, 2, 9 | mpanl12 436 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) |
| 11 | 6, 10 | mpan2 425 | . . 3 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) |
| 12 | 11 | biimpd 144 | . 2 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) |
| 13 | 5, 12 | mpcom 36 | 1 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 (class class class)co 5943 ℝcr 7923 + caddc 7927 [,]cicc 10012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-icc 10016 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |