![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recdivap | GIF version |
Description: The reciprocal of a ratio. (Contributed by Jim Kingdon, 26-Feb-2020.) |
Ref | Expression |
---|---|
recdivap | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1div1e1 8067 | . . . 4 ⊢ (1 / 1) = 1 | |
2 | 1 | oveq1i 5599 | . . 3 ⊢ ((1 / 1) / (𝐴 / 𝐵)) = (1 / (𝐴 / 𝐵)) |
3 | ax-1cn 7339 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | 1ap0 7965 | . . . . 5 ⊢ 1 # 0 | |
5 | 3, 4 | pm3.2i 266 | . . . 4 ⊢ (1 ∈ ℂ ∧ 1 # 0) |
6 | divdivdivap 8076 | . . . 4 ⊢ (((1 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 # 0)) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0))) → ((1 / 1) / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴))) | |
7 | 3, 5, 6 | mpanl12 427 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 1) / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴))) |
8 | 2, 7 | syl5eqr 2129 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴))) |
9 | mulid2 7387 | . . . 4 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
10 | mulid2 7387 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
11 | 9, 10 | oveqan12rd 5609 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) / (1 · 𝐴)) = (𝐵 / 𝐴)) |
12 | 11 | ad2ant2r 493 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 · 𝐵) / (1 · 𝐴)) = (𝐵 / 𝐴)) |
13 | 8, 12 | eqtrd 2115 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 class class class wbr 3811 (class class class)co 5589 ℂcc 7249 0cc0 7251 1c1 7252 · cmul 7256 # cap 7956 / cdiv 8035 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-cnex 7337 ax-resscn 7338 ax-1cn 7339 ax-1re 7340 ax-icn 7341 ax-addcl 7342 ax-addrcl 7343 ax-mulcl 7344 ax-mulrcl 7345 ax-addcom 7346 ax-mulcom 7347 ax-addass 7348 ax-mulass 7349 ax-distr 7350 ax-i2m1 7351 ax-0lt1 7352 ax-1rid 7353 ax-0id 7354 ax-rnegex 7355 ax-precex 7356 ax-cnre 7357 ax-pre-ltirr 7358 ax-pre-ltwlin 7359 ax-pre-lttrn 7360 ax-pre-apti 7361 ax-pre-ltadd 7362 ax-pre-mulgt0 7363 ax-pre-mulext 7364 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-id 4083 df-po 4086 df-iso 4087 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-iota 4932 df-fun 4969 df-fv 4975 df-riota 5545 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-pnf 7425 df-mnf 7426 df-xr 7427 df-ltxr 7428 df-le 7429 df-sub 7556 df-neg 7557 df-reap 7950 df-ap 7957 df-div 8036 |
This theorem is referenced by: divcanap6 8082 recdivapd 8169 |
Copyright terms: Public domain | W3C validator |