ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recdivap GIF version

Theorem recdivap 8339
Description: The reciprocal of a ratio. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
recdivap (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))

Proof of Theorem recdivap
StepHypRef Expression
1 1div1e1 8325 . . . 4 (1 / 1) = 1
21oveq1i 5716 . . 3 ((1 / 1) / (𝐴 / 𝐵)) = (1 / (𝐴 / 𝐵))
3 ax-1cn 7588 . . . 4 1 ∈ ℂ
4 1ap0 8218 . . . . 5 1 # 0
53, 4pm3.2i 268 . . . 4 (1 ∈ ℂ ∧ 1 # 0)
6 divdivdivap 8334 . . . 4 (((1 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 # 0)) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0))) → ((1 / 1) / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴)))
73, 5, 6mpanl12 430 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 1) / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴)))
82, 7syl5eqr 2146 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴)))
9 mulid2 7636 . . . 4 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
10 mulid2 7636 . . . 4 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
119, 10oveqan12rd 5726 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) / (1 · 𝐴)) = (𝐵 / 𝐴))
1211ad2ant2r 496 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 · 𝐵) / (1 · 𝐴)) = (𝐵 / 𝐴))
138, 12eqtrd 2132 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448   class class class wbr 3875  (class class class)co 5706  cc 7498  0cc0 7500  1c1 7501   · cmul 7505   # cap 8209   / cdiv 8293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294
This theorem is referenced by:  divcanap6  8340  recdivapd  8428
  Copyright terms: Public domain W3C validator