ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  amgm2 GIF version

Theorem amgm2 11130
Description: Arithmetic-geometric mean inequality for ๐‘› = 2. (Contributed by Mario Carneiro, 2-Jul-2014.)
Assertion
Ref Expression
amgm2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) โ‰ค ((๐ด + ๐ต) / 2))

Proof of Theorem amgm2
StepHypRef Expression
1 2cn 8993 . . . . . 6 2 โˆˆ โ„‚
2 simpll 527 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ๐ด โˆˆ โ„)
3 simprl 529 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ๐ต โˆˆ โ„)
4 remulcl 7942 . . . . . . . . 9 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ด ยท ๐ต) โˆˆ โ„)
52, 3, 4syl2anc 411 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด ยท ๐ต) โˆˆ โ„)
6 mulge0 8579 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (๐ด ยท ๐ต))
7 resqrtcl 11041 . . . . . . . 8 (((๐ด ยท ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ด ยท ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„)
85, 6, 7syl2anc 411 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„)
98recnd 7989 . . . . . 6 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„‚)
10 sqmul 10585 . . . . . 6 ((2 โˆˆ โ„‚ โˆง (โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„‚) โ†’ ((2 ยท (โˆšโ€˜(๐ด ยท ๐ต)))โ†‘2) = ((2โ†‘2) ยท ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2)))
111, 9, 10sylancr 414 . . . . 5 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((2 ยท (โˆšโ€˜(๐ด ยท ๐ต)))โ†‘2) = ((2โ†‘2) ยท ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2)))
12 sq2 10619 . . . . . . 7 (2โ†‘2) = 4
1312oveq1i 5888 . . . . . 6 ((2โ†‘2) ยท ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2)) = (4 ยท ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2))
14 resqrtth 11043 . . . . . . . 8 (((๐ด ยท ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ด ยท ๐ต)) โ†’ ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2) = (๐ด ยท ๐ต))
155, 6, 14syl2anc 411 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2) = (๐ด ยท ๐ต))
1615oveq2d 5894 . . . . . 6 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (4 ยท ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2)) = (4 ยท (๐ด ยท ๐ต)))
1713, 16eqtrid 2222 . . . . 5 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((2โ†‘2) ยท ((โˆšโ€˜(๐ด ยท ๐ต))โ†‘2)) = (4 ยท (๐ด ยท ๐ต)))
1811, 17eqtrd 2210 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((2 ยท (โˆšโ€˜(๐ด ยท ๐ต)))โ†‘2) = (4 ยท (๐ด ยท ๐ต)))
192, 3resubcld 8341 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด โˆ’ ๐ต) โˆˆ โ„)
2019sqge0d 10684 . . . . . 6 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค ((๐ด โˆ’ ๐ต)โ†‘2))
212recnd 7989 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ๐ด โˆˆ โ„‚)
223recnd 7989 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ๐ต โˆˆ โ„‚)
23 binom2 10635 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด + ๐ต)โ†‘2) = (((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) + (๐ตโ†‘2)))
2421, 22, 23syl2anc 411 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด + ๐ต)โ†‘2) = (((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) + (๐ตโ†‘2)))
25 binom2sub 10637 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด โˆ’ ๐ต)โ†‘2) = (((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต))) + (๐ตโ†‘2)))
2621, 22, 25syl2anc 411 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด โˆ’ ๐ต)โ†‘2) = (((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต))) + (๐ตโ†‘2)))
2724, 26oveq12d 5896 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (((๐ด + ๐ต)โ†‘2) โˆ’ ((๐ด โˆ’ ๐ต)โ†‘2)) = ((((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) + (๐ตโ†‘2)) โˆ’ (((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต))) + (๐ตโ†‘2))))
282resqcld 10683 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ดโ†‘2) โˆˆ โ„)
29 2re 8992 . . . . . . . . . . . 12 2 โˆˆ โ„
30 remulcl 7942 . . . . . . . . . . . 12 ((2 โˆˆ โ„ โˆง (๐ด ยท ๐ต) โˆˆ โ„) โ†’ (2 ยท (๐ด ยท ๐ต)) โˆˆ โ„)
3129, 5, 30sylancr 414 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (2 ยท (๐ด ยท ๐ต)) โˆˆ โ„)
3228, 31readdcld 7990 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) โˆˆ โ„)
3332recnd 7989 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) โˆˆ โ„‚)
3428, 31resubcld 8341 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต))) โˆˆ โ„)
3534recnd 7989 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต))) โˆˆ โ„‚)
363resqcld 10683 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ตโ†‘2) โˆˆ โ„)
3736recnd 7989 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
3833, 35, 37pnpcan2d 8309 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) + (๐ตโ†‘2)) โˆ’ (((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต))) + (๐ตโ†‘2))) = (((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) โˆ’ ((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต)))))
3931recnd 7989 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (2 ยท (๐ด ยท ๐ต)) โˆˆ โ„‚)
40392timesd 9164 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (2 ยท (2 ยท (๐ด ยท ๐ต))) = ((2 ยท (๐ด ยท ๐ต)) + (2 ยท (๐ด ยท ๐ต))))
41 2t2e4 9076 . . . . . . . . . . 11 (2 ยท 2) = 4
4241oveq1i 5888 . . . . . . . . . 10 ((2 ยท 2) ยท (๐ด ยท ๐ต)) = (4 ยท (๐ด ยท ๐ต))
43 2cnd 8995 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 2 โˆˆ โ„‚)
445recnd 7989 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด ยท ๐ต) โˆˆ โ„‚)
4543, 43, 44mulassd 7984 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((2 ยท 2) ยท (๐ด ยท ๐ต)) = (2 ยท (2 ยท (๐ด ยท ๐ต))))
4642, 45eqtr3id 2224 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (4 ยท (๐ด ยท ๐ต)) = (2 ยท (2 ยท (๐ด ยท ๐ต))))
4728recnd 7989 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
4847, 39, 39pnncand 8310 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) โˆ’ ((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต)))) = ((2 ยท (๐ด ยท ๐ต)) + (2 ยท (๐ด ยท ๐ต))))
4940, 46, 483eqtr4rd 2221 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (((๐ดโ†‘2) + (2 ยท (๐ด ยท ๐ต))) โˆ’ ((๐ดโ†‘2) โˆ’ (2 ยท (๐ด ยท ๐ต)))) = (4 ยท (๐ด ยท ๐ต)))
5027, 38, 493eqtrd 2214 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (((๐ด + ๐ต)โ†‘2) โˆ’ ((๐ด โˆ’ ๐ต)โ†‘2)) = (4 ยท (๐ด ยท ๐ต)))
512, 3readdcld 7990 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (๐ด + ๐ต) โˆˆ โ„)
5251resqcld 10683 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด + ๐ต)โ†‘2) โˆˆ โ„)
5352recnd 7989 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด + ๐ต)โ†‘2) โˆˆ โ„‚)
5419resqcld 10683 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด โˆ’ ๐ต)โ†‘2) โˆˆ โ„)
5554recnd 7989 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((๐ด โˆ’ ๐ต)โ†‘2) โˆˆ โ„‚)
56 4re 8999 . . . . . . . . . 10 4 โˆˆ โ„
57 remulcl 7942 . . . . . . . . . 10 ((4 โˆˆ โ„ โˆง (๐ด ยท ๐ต) โˆˆ โ„) โ†’ (4 ยท (๐ด ยท ๐ต)) โˆˆ โ„)
5856, 5, 57sylancr 414 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (4 ยท (๐ด ยท ๐ต)) โˆˆ โ„)
5958recnd 7989 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (4 ยท (๐ด ยท ๐ต)) โˆˆ โ„‚)
60 subsub23 8165 . . . . . . . 8 ((((๐ด + ๐ต)โ†‘2) โˆˆ โ„‚ โˆง ((๐ด โˆ’ ๐ต)โ†‘2) โˆˆ โ„‚ โˆง (4 ยท (๐ด ยท ๐ต)) โˆˆ โ„‚) โ†’ ((((๐ด + ๐ต)โ†‘2) โˆ’ ((๐ด โˆ’ ๐ต)โ†‘2)) = (4 ยท (๐ด ยท ๐ต)) โ†” (((๐ด + ๐ต)โ†‘2) โˆ’ (4 ยท (๐ด ยท ๐ต))) = ((๐ด โˆ’ ๐ต)โ†‘2)))
6153, 55, 59, 60syl3anc 1238 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((((๐ด + ๐ต)โ†‘2) โˆ’ ((๐ด โˆ’ ๐ต)โ†‘2)) = (4 ยท (๐ด ยท ๐ต)) โ†” (((๐ด + ๐ต)โ†‘2) โˆ’ (4 ยท (๐ด ยท ๐ต))) = ((๐ด โˆ’ ๐ต)โ†‘2)))
6250, 61mpbid 147 . . . . . 6 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (((๐ด + ๐ต)โ†‘2) โˆ’ (4 ยท (๐ด ยท ๐ต))) = ((๐ด โˆ’ ๐ต)โ†‘2))
6320, 62breqtrrd 4033 . . . . 5 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (((๐ด + ๐ต)โ†‘2) โˆ’ (4 ยท (๐ด ยท ๐ต))))
6452, 58subge0d 8495 . . . . 5 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (0 โ‰ค (((๐ด + ๐ต)โ†‘2) โˆ’ (4 ยท (๐ด ยท ๐ต))) โ†” (4 ยท (๐ด ยท ๐ต)) โ‰ค ((๐ด + ๐ต)โ†‘2)))
6563, 64mpbid 147 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (4 ยท (๐ด ยท ๐ต)) โ‰ค ((๐ด + ๐ต)โ†‘2))
6618, 65eqbrtrd 4027 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((2 ยท (โˆšโ€˜(๐ด ยท ๐ต)))โ†‘2) โ‰ค ((๐ด + ๐ต)โ†‘2))
67 remulcl 7942 . . . . 5 ((2 โˆˆ โ„ โˆง (โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„) โ†’ (2 ยท (โˆšโ€˜(๐ด ยท ๐ต))) โˆˆ โ„)
6829, 8, 67sylancr 414 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (2 ยท (โˆšโ€˜(๐ด ยท ๐ต))) โˆˆ โ„)
69 sqrtge0 11045 . . . . . 6 (((๐ด ยท ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ด ยท ๐ต)) โ†’ 0 โ‰ค (โˆšโ€˜(๐ด ยท ๐ต)))
705, 6, 69syl2anc 411 . . . . 5 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (โˆšโ€˜(๐ด ยท ๐ต)))
71 0le2 9012 . . . . . 6 0 โ‰ค 2
72 mulge0 8579 . . . . . 6 (((2 โˆˆ โ„ โˆง 0 โ‰ค 2) โˆง ((โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„ โˆง 0 โ‰ค (โˆšโ€˜(๐ด ยท ๐ต)))) โ†’ 0 โ‰ค (2 ยท (โˆšโ€˜(๐ด ยท ๐ต))))
7329, 71, 72mpanl12 436 . . . . 5 (((โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„ โˆง 0 โ‰ค (โˆšโ€˜(๐ด ยท ๐ต))) โ†’ 0 โ‰ค (2 ยท (โˆšโ€˜(๐ด ยท ๐ต))))
748, 70, 73syl2anc 411 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (2 ยท (โˆšโ€˜(๐ด ยท ๐ต))))
75 addge0 8411 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (0 โ‰ค ๐ด โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (๐ด + ๐ต))
7675an4s 588 . . . 4 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ 0 โ‰ค (๐ด + ๐ต))
7768, 51, 74, 76le2sqd 10689 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((2 ยท (โˆšโ€˜(๐ด ยท ๐ต))) โ‰ค (๐ด + ๐ต) โ†” ((2 ยท (โˆšโ€˜(๐ด ยท ๐ต)))โ†‘2) โ‰ค ((๐ด + ๐ต)โ†‘2)))
7866, 77mpbird 167 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (2 ยท (โˆšโ€˜(๐ด ยท ๐ต))) โ‰ค (๐ด + ๐ต))
79 2pos 9013 . . . . 5 0 < 2
8029, 79pm3.2i 272 . . . 4 (2 โˆˆ โ„ โˆง 0 < 2)
8180a1i 9 . . 3 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (2 โˆˆ โ„ โˆง 0 < 2))
82 lemuldiv2 8842 . . 3 (((โˆšโ€˜(๐ด ยท ๐ต)) โˆˆ โ„ โˆง (๐ด + ๐ต) โˆˆ โ„ โˆง (2 โˆˆ โ„ โˆง 0 < 2)) โ†’ ((2 ยท (โˆšโ€˜(๐ด ยท ๐ต))) โ‰ค (๐ด + ๐ต) โ†” (โˆšโ€˜(๐ด ยท ๐ต)) โ‰ค ((๐ด + ๐ต) / 2)))
838, 51, 81, 82syl3anc 1238 . 2 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ ((2 ยท (โˆšโ€˜(๐ด ยท ๐ต))) โ‰ค (๐ด + ๐ต) โ†” (โˆšโ€˜(๐ด ยท ๐ต)) โ‰ค ((๐ด + ๐ต) / 2)))
8478, 83mpbid 147 1 (((๐ด โˆˆ โ„ โˆง 0 โ‰ค ๐ด) โˆง (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต)) โ†’ (โˆšโ€˜(๐ด ยท ๐ต)) โ‰ค ((๐ด + ๐ต) / 2))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   = wceq 1353   โˆˆ wcel 2148   class class class wbr 4005  โ€˜cfv 5218  (class class class)co 5878  โ„‚cc 7812  โ„cr 7813  0cc0 7814   + caddc 7817   ยท cmul 7819   < clt 7995   โ‰ค cle 7996   โˆ’ cmin 8131   / cdiv 8632  2c2 8973  4c4 8975  โ†‘cexp 10522  โˆšcsqrt 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-rp 9657  df-seqfrec 10449  df-exp 10523  df-rsqrt 11010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator