Proof of Theorem amgm2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 2cn 9061 | 
. . . . . 6
⊢ 2 ∈
ℂ | 
| 2 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ) | 
| 3 |   | simprl 529 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) | 
| 4 |   | remulcl 8007 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | 
| 5 | 2, 3, 4 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℝ) | 
| 6 |   | mulge0 8646 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | 
| 7 |   | resqrtcl 11194 | 
. . . . . . . 8
⊢ (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℝ) | 
| 8 | 5, 6, 7 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℝ) | 
| 9 | 8 | recnd 8055 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℂ) | 
| 10 |   | sqmul 10693 | 
. . . . . 6
⊢ ((2
∈ ℂ ∧ (√‘(𝐴 · 𝐵)) ∈ ℂ) → ((2 ·
(√‘(𝐴 ·
𝐵)))↑2) = ((2↑2)
· ((√‘(𝐴
· 𝐵))↑2))) | 
| 11 | 1, 9, 10 | sylancr 414 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵)))↑2) = ((2↑2)
· ((√‘(𝐴
· 𝐵))↑2))) | 
| 12 |   | sq2 10727 | 
. . . . . . 7
⊢
(2↑2) = 4 | 
| 13 | 12 | oveq1i 5932 | 
. . . . . 6
⊢
((2↑2) · ((√‘(𝐴 · 𝐵))↑2)) = (4 ·
((√‘(𝐴 ·
𝐵))↑2)) | 
| 14 |   | resqrtth 11196 | 
. . . . . . . 8
⊢ (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → ((√‘(𝐴 · 𝐵))↑2) = (𝐴 · 𝐵)) | 
| 15 | 5, 6, 14 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘(𝐴 · 𝐵))↑2) = (𝐴 · 𝐵)) | 
| 16 | 15 | oveq2d 5938 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 ·
((√‘(𝐴 ·
𝐵))↑2)) = (4 ·
(𝐴 · 𝐵))) | 
| 17 | 13, 16 | eqtrid 2241 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2↑2) ·
((√‘(𝐴 ·
𝐵))↑2)) = (4 ·
(𝐴 · 𝐵))) | 
| 18 | 11, 17 | eqtrd 2229 | 
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵)))↑2) = (4 ·
(𝐴 · 𝐵))) | 
| 19 | 2, 3 | resubcld 8407 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 − 𝐵) ∈ ℝ) | 
| 20 | 19 | sqge0d 10792 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ ((𝐴 − 𝐵)↑2)) | 
| 21 | 2 | recnd 8055 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ) | 
| 22 | 3 | recnd 8055 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℂ) | 
| 23 |   | binom2 10743 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | 
| 24 | 21, 22, 23 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | 
| 25 |   | binom2sub 10745 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | 
| 26 | 21, 22, 25 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | 
| 27 | 24, 26 | oveq12d 5940 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))) | 
| 28 | 2 | resqcld 10791 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ∈ ℝ) | 
| 29 |   | 2re 9060 | 
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ | 
| 30 |   | remulcl 8007 | 
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ (𝐴
· 𝐵) ∈ ℝ)
→ (2 · (𝐴
· 𝐵)) ∈
ℝ) | 
| 31 | 29, 5, 30 | sylancr 414 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (𝐴 · 𝐵)) ∈ ℝ) | 
| 32 | 28, 31 | readdcld 8056 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℝ) | 
| 33 | 32 | recnd 8055 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ) | 
| 34 | 28, 31 | resubcld 8407 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) − (2 · (𝐴 · 𝐵))) ∈ ℝ) | 
| 35 | 34 | recnd 8055 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) − (2 · (𝐴 · 𝐵))) ∈ ℂ) | 
| 36 | 3 | resqcld 10791 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵↑2) ∈ ℝ) | 
| 37 | 36 | recnd 8055 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵↑2) ∈ ℂ) | 
| 38 | 33, 35, 37 | pnpcan2d 8375 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵))))) | 
| 39 | 31 | recnd 8055 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (𝐴 · 𝐵)) ∈ ℂ) | 
| 40 | 39 | 2timesd 9234 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (2
· (𝐴 · 𝐵))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐴 · 𝐵)))) | 
| 41 |   | 2t2e4 9145 | 
. . . . . . . . . . 11
⊢ (2
· 2) = 4 | 
| 42 | 41 | oveq1i 5932 | 
. . . . . . . . . 10
⊢ ((2
· 2) · (𝐴
· 𝐵)) = (4 ·
(𝐴 · 𝐵)) | 
| 43 |   | 2cnd 9063 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 2 ∈
ℂ) | 
| 44 | 5 | recnd 8055 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℂ) | 
| 45 | 43, 43, 44 | mulassd 8050 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · 2)
· (𝐴 · 𝐵)) = (2 · (2 ·
(𝐴 · 𝐵)))) | 
| 46 | 42, 45 | eqtr3id 2243 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) = (2 · (2 · (𝐴 · 𝐵)))) | 
| 47 | 28 | recnd 8055 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ∈ ℂ) | 
| 48 | 47, 39, 39 | pnncand 8376 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐴 · 𝐵)))) | 
| 49 | 40, 46, 48 | 3eqtr4rd 2240 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) = (4 · (𝐴 · 𝐵))) | 
| 50 | 27, 38, 49 | 3eqtrd 2233 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵))) | 
| 51 | 2, 3 | readdcld 8056 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 + 𝐵) ∈ ℝ) | 
| 52 | 51 | resqcld 10791 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) ∈ ℝ) | 
| 53 | 52 | recnd 8055 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) ∈ ℂ) | 
| 54 | 19 | resqcld 10791 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 − 𝐵)↑2) ∈ ℝ) | 
| 55 | 54 | recnd 8055 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 − 𝐵)↑2) ∈ ℂ) | 
| 56 |   | 4re 9067 | 
. . . . . . . . . 10
⊢ 4 ∈
ℝ | 
| 57 |   | remulcl 8007 | 
. . . . . . . . . 10
⊢ ((4
∈ ℝ ∧ (𝐴
· 𝐵) ∈ ℝ)
→ (4 · (𝐴
· 𝐵)) ∈
ℝ) | 
| 58 | 56, 5, 57 | sylancr 414 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ∈ ℝ) | 
| 59 | 58 | recnd 8055 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ∈ ℂ) | 
| 60 |   | subsub23 8231 | 
. . . . . . . 8
⊢ ((((𝐴 + 𝐵)↑2) ∈ ℂ ∧ ((𝐴 − 𝐵)↑2) ∈ ℂ ∧ (4 ·
(𝐴 · 𝐵)) ∈ ℂ) →
((((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵)) ↔ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴 − 𝐵)↑2))) | 
| 61 | 53, 55, 59, 60 | syl3anc 1249 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵)) ↔ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴 − 𝐵)↑2))) | 
| 62 | 50, 61 | mpbid 147 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴 − 𝐵)↑2)) | 
| 63 | 20, 62 | breqtrrd 4061 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵)))) | 
| 64 | 52, 58 | subge0d 8562 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (0 ≤ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) ↔ (4 · (𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵)↑2))) | 
| 65 | 63, 64 | mpbid 147 | 
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵)↑2)) | 
| 66 | 18, 65 | eqbrtrd 4055 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵)))↑2) ≤ ((𝐴 + 𝐵)↑2)) | 
| 67 |   | remulcl 8007 | 
. . . . 5
⊢ ((2
∈ ℝ ∧ (√‘(𝐴 · 𝐵)) ∈ ℝ) → (2 ·
(√‘(𝐴 ·
𝐵))) ∈
ℝ) | 
| 68 | 29, 8, 67 | sylancr 414 | 
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 ·
(√‘(𝐴 ·
𝐵))) ∈
ℝ) | 
| 69 |   | sqrtge0 11198 | 
. . . . . 6
⊢ (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → 0 ≤ (√‘(𝐴 · 𝐵))) | 
| 70 | 5, 6, 69 | syl2anc 411 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤
(√‘(𝐴 ·
𝐵))) | 
| 71 |   | 0le2 9080 | 
. . . . . 6
⊢ 0 ≤
2 | 
| 72 |   | mulge0 8646 | 
. . . . . 6
⊢ (((2
∈ ℝ ∧ 0 ≤ 2) ∧ ((√‘(𝐴 · 𝐵)) ∈ ℝ ∧ 0 ≤
(√‘(𝐴 ·
𝐵)))) → 0 ≤ (2
· (√‘(𝐴
· 𝐵)))) | 
| 73 | 29, 71, 72 | mpanl12 436 | 
. . . . 5
⊢
(((√‘(𝐴
· 𝐵)) ∈ ℝ
∧ 0 ≤ (√‘(𝐴 · 𝐵))) → 0 ≤ (2 ·
(√‘(𝐴 ·
𝐵)))) | 
| 74 | 8, 70, 73 | syl2anc 411 | 
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (2 ·
(√‘(𝐴 ·
𝐵)))) | 
| 75 |   | addge0 8478 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) | 
| 76 | 75 | an4s 588 | 
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) | 
| 77 | 68, 51, 74, 76 | le2sqd 10797 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵))) ≤ (𝐴 + 𝐵) ↔ ((2 · (√‘(𝐴 · 𝐵)))↑2) ≤ ((𝐴 + 𝐵)↑2))) | 
| 78 | 66, 77 | mpbird 167 | 
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 ·
(√‘(𝐴 ·
𝐵))) ≤ (𝐴 + 𝐵)) | 
| 79 |   | 2pos 9081 | 
. . . . 5
⊢ 0 <
2 | 
| 80 | 29, 79 | pm3.2i 272 | 
. . . 4
⊢ (2 ∈
ℝ ∧ 0 < 2) | 
| 81 | 80 | a1i 9 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 ∈ ℝ
∧ 0 < 2)) | 
| 82 |   | lemuldiv2 8909 | 
. . 3
⊢
(((√‘(𝐴
· 𝐵)) ∈ ℝ
∧ (𝐴 + 𝐵) ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → ((2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵) ↔ (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))) | 
| 83 | 8, 51, 81, 82 | syl3anc 1249 | 
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 ·
(√‘(𝐴 ·
𝐵))) ≤ (𝐴 + 𝐵) ↔ (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))) | 
| 84 | 78, 83 | mpbid 147 | 
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) |