Proof of Theorem mulexpzap
Step | Hyp | Ref
| Expression |
1 | | elznn0nn 9226 |
. . 3
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨
(𝑁 ∈ ℝ ∧
-𝑁 ∈
ℕ))) |
2 | | simpl 108 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐴 ∈ ℂ) |
3 | | simpl 108 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) |
4 | 2, 3 | anim12i 336 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
5 | | mulexp 10515 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |
6 | 5 | 3expa 1198 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |
7 | 4, 6 | sylan 281 |
. . . 4
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |
8 | | simplll 528 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ) |
9 | | simplrl 530 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 ∈ ℂ) |
10 | 8, 9 | mulcld 7940 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴 · 𝐵) ∈ ℂ) |
11 | | simpllr 529 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0) |
12 | | simplrr 531 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 # 0) |
13 | 8, 9, 11, 12 | mulap0d 8576 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴 · 𝐵) # 0) |
14 | | recn 7907 |
. . . . . . 7
⊢ (𝑁 ∈ ℝ → 𝑁 ∈
ℂ) |
15 | 14 | ad2antrl 487 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ) |
16 | | nnnn0 9142 |
. . . . . . 7
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℕ0) |
17 | 16 | ad2antll 488 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈
ℕ0) |
18 | | expineg2 10485 |
. . . . . 6
⊢ ((((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐵) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁))) |
19 | 10, 13, 15, 17, 18 | syl22anc 1234 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁))) |
20 | | expineg2 10485 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
21 | 8, 11, 15, 17, 20 | syl22anc 1234 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
22 | | expineg2 10485 |
. . . . . . . 8
⊢ (((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) |
23 | 9, 12, 15, 17, 22 | syl22anc 1234 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) |
24 | 21, 23 | oveq12d 5871 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑𝑁) · (𝐵↑𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁)))) |
25 | | mulexp 10515 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0)
→ ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁))) |
26 | 8, 9, 17, 25 | syl3anc 1233 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁))) |
27 | 26 | oveq2d 5869 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))) |
28 | | 1t1e1 9030 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
29 | 28 | oveq1i 5863 |
. . . . . . . 8
⊢ ((1
· 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁))) |
30 | 27, 29 | eqtr4di 2221 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))) |
31 | | expcl 10494 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0)
→ (𝐴↑-𝑁) ∈
ℂ) |
32 | 8, 17, 31 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ) |
33 | | nnz 9231 |
. . . . . . . . . 10
⊢ (-𝑁 ∈ ℕ → -𝑁 ∈
ℤ) |
34 | 33 | ad2antll 488 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ) |
35 | | expap0i 10508 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) # 0) |
36 | 8, 11, 34, 35 | syl3anc 1233 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) # 0) |
37 | | expcl 10494 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0)
→ (𝐵↑-𝑁) ∈
ℂ) |
38 | 9, 17, 37 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) ∈ ℂ) |
39 | | expap0i 10508 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0 ∧ -𝑁 ∈ ℤ) → (𝐵↑-𝑁) # 0) |
40 | 9, 12, 34, 39 | syl3anc 1233 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) # 0) |
41 | | ax-1cn 7867 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
42 | | divmuldivap 8629 |
. . . . . . . . 9
⊢ (((1
∈ ℂ ∧ 1 ∈ ℂ) ∧ (((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) # 0))) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))) |
43 | 41, 41, 42 | mpanl12 434 |
. . . . . . . 8
⊢ ((((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) # 0)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))) |
44 | 32, 36, 38, 40, 43 | syl22anc 1234 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))) |
45 | 30, 44 | eqtr4d 2206 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁)))) |
46 | 24, 45 | eqtr4d 2206 |
. . . . 5
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴↑𝑁) · (𝐵↑𝑁)) = (1 / ((𝐴 · 𝐵)↑-𝑁))) |
47 | 19, 46 | eqtr4d 2206 |
. . . 4
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |
48 | 7, 47 | jaodan 792 |
. . 3
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) →
((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |
49 | 1, 48 | sylan2b 285 |
. 2
⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |
50 | 49 | 3impa 1189 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |