ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulexpzap GIF version

Theorem mulexpzap 10600
Description: Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
mulexpzap (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexpzap
StepHypRef Expression
1 elznn0nn 9302 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐴 ∈ ℂ)
3 simpl 109 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ)
42, 3anim12i 338 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 mulexp 10599 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
653expa 1205 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
74, 6sylan 283 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
8 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
9 simplrl 535 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 ∈ ℂ)
108, 9mulcld 8013 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴 · 𝐵) ∈ ℂ)
11 simpllr 534 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0)
12 simplrr 536 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 # 0)
138, 9, 11, 12mulap0d 8650 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴 · 𝐵) # 0)
14 recn 7979 . . . . . . 7 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
1514ad2antrl 490 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
16 nnnn0 9218 . . . . . . 7 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1716ad2antll 491 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
18 expineg2 10569 . . . . . 6 ((((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐵) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
1910, 13, 15, 17, 18syl22anc 1250 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
20 expineg2 10569 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
218, 11, 15, 17, 20syl22anc 1250 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
22 expineg2 10569 . . . . . . . 8 (((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
239, 12, 15, 17, 22syl22anc 1250 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
2421, 23oveq12d 5918 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑁) · (𝐵𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))))
25 mulexp 10599 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
268, 9, 17, 25syl3anc 1249 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
2726oveq2d 5916 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
28 1t1e1 9106 . . . . . . . . 9 (1 · 1) = 1
2928oveq1i 5910 . . . . . . . 8 ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
3027, 29eqtr4di 2240 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
31 expcl 10578 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
328, 17, 31syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
33 nnz 9307 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
3433ad2antll 491 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
35 expap0i 10592 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) # 0)
368, 11, 34, 35syl3anc 1249 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) # 0)
37 expcl 10578 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑-𝑁) ∈ ℂ)
389, 17, 37syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) ∈ ℂ)
39 expap0i 10592 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 # 0 ∧ -𝑁 ∈ ℤ) → (𝐵↑-𝑁) # 0)
409, 12, 34, 39syl3anc 1249 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) # 0)
41 ax-1cn 7939 . . . . . . . . 9 1 ∈ ℂ
42 divmuldivap 8704 . . . . . . . . 9 (((1 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) # 0))) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4341, 41, 42mpanl12 436 . . . . . . . 8 ((((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) # 0)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4432, 36, 38, 40, 43syl22anc 1250 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4530, 44eqtr4d 2225 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))))
4624, 45eqtr4d 2225 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑁) · (𝐵𝑁)) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
4719, 46eqtr4d 2225 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
487, 47jaodan 798 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
491, 48sylan2b 287 . 2 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
50493impa 1196 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4021  (class class class)co 5900  cc 7844  cr 7845  0cc0 7846  1c1 7847   · cmul 7851  -cneg 8164   # cap 8573   / cdiv 8664  cn 8954  0cn0 9211  cz 9288  cexp 10559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-n0 9212  df-z 9289  df-uz 9564  df-seqfrec 10485  df-exp 10560
This theorem is referenced by:  exprecap  10601
  Copyright terms: Public domain W3C validator