ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulexpzap GIF version

Theorem mulexpzap 10516
Description: Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
mulexpzap (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexpzap
StepHypRef Expression
1 elznn0nn 9226 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 simpl 108 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐴 ∈ ℂ)
3 simpl 108 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ)
42, 3anim12i 336 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
5 mulexp 10515 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
653expa 1198 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
74, 6sylan 281 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
8 simplll 528 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
9 simplrl 530 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 ∈ ℂ)
108, 9mulcld 7940 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴 · 𝐵) ∈ ℂ)
11 simpllr 529 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0)
12 simplrr 531 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐵 # 0)
138, 9, 11, 12mulap0d 8576 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴 · 𝐵) # 0)
14 recn 7907 . . . . . . 7 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
1514ad2antrl 487 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
16 nnnn0 9142 . . . . . . 7 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1716ad2antll 488 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
18 expineg2 10485 . . . . . 6 ((((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐵) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
1910, 13, 15, 17, 18syl22anc 1234 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
20 expineg2 10485 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
218, 11, 15, 17, 20syl22anc 1234 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
22 expineg2 10485 . . . . . . . 8 (((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
239, 12, 15, 17, 22syl22anc 1234 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
2421, 23oveq12d 5871 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑁) · (𝐵𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))))
25 mulexp 10515 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
268, 9, 17, 25syl3anc 1233 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑-𝑁) = ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
2726oveq2d 5869 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
28 1t1e1 9030 . . . . . . . . 9 (1 · 1) = 1
2928oveq1i 5863 . . . . . . . 8 ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))) = (1 / ((𝐴↑-𝑁) · (𝐵↑-𝑁)))
3027, 29eqtr4di 2221 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
31 expcl 10494 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
328, 17, 31syl2anc 409 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
33 nnz 9231 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
3433ad2antll 488 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
35 expap0i 10508 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) # 0)
368, 11, 34, 35syl3anc 1233 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) # 0)
37 expcl 10494 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑-𝑁) ∈ ℂ)
389, 17, 37syl2anc 409 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) ∈ ℂ)
39 expap0i 10508 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 # 0 ∧ -𝑁 ∈ ℤ) → (𝐵↑-𝑁) # 0)
409, 12, 34, 39syl3anc 1233 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐵↑-𝑁) # 0)
41 ax-1cn 7867 . . . . . . . . 9 1 ∈ ℂ
42 divmuldivap 8629 . . . . . . . . 9 (((1 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) # 0))) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4341, 41, 42mpanl12 434 . . . . . . . 8 ((((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0) ∧ ((𝐵↑-𝑁) ∈ ℂ ∧ (𝐵↑-𝑁) # 0)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4432, 36, 38, 40, 43syl22anc 1234 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑁) · (𝐵↑-𝑁))))
4530, 44eqtr4d 2206 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / ((𝐴 · 𝐵)↑-𝑁)) = ((1 / (𝐴↑-𝑁)) · (1 / (𝐵↑-𝑁))))
4624, 45eqtr4d 2206 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑁) · (𝐵𝑁)) = (1 / ((𝐴 · 𝐵)↑-𝑁)))
4719, 46eqtr4d 2206 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
487, 47jaodan 792 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
491, 48sylan2b 285 . 2 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
50493impa 1189 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   · cmul 7779  -cneg 8091   # cap 8500   / cdiv 8589  cn 8878  0cn0 9135  cz 9212  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  exprecap  10517
  Copyright terms: Public domain W3C validator