ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map2psrprg GIF version

Theorem map2psrprg 7637
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
map2psrprg (𝐶R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶

Proof of Theorem map2psrprg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 7570 . . . . . . 7 <R ⊆ (R × R)
21brel 4599 . . . . . 6 ((𝐶 +R -1R) <R 𝐴 → ((𝐶 +R -1R) ∈ R𝐴R))
32simprd 113 . . . . 5 ((𝐶 +R -1R) <R 𝐴𝐴R)
43anim2i 340 . . . 4 ((𝐶R ∧ (𝐶 +R -1R) <R 𝐴) → (𝐶R𝐴R))
5 simpr 109 . . . 4 ((𝐶R ∧ (𝐶 +R -1R) <R 𝐴) → (𝐶 +R -1R) <R 𝐴)
6 m1r 7584 . . . . . . . 8 -1RR
76a1i 9 . . . . . . 7 ((𝐶R𝐴R) → -1RR)
8 simpl 108 . . . . . . . . 9 ((𝐶R𝐴R) → 𝐶R)
9 mulclsr 7586 . . . . . . . . 9 ((𝐶R ∧ -1RR) → (𝐶 ·R -1R) ∈ R)
108, 7, 9syl2anc 409 . . . . . . . 8 ((𝐶R𝐴R) → (𝐶 ·R -1R) ∈ R)
11 simpr 109 . . . . . . . 8 ((𝐶R𝐴R) → 𝐴R)
12 addclsr 7585 . . . . . . . 8 (((𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
1310, 11, 12syl2anc 409 . . . . . . 7 ((𝐶R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
14 ltasrg 7602 . . . . . . 7 ((-1RR ∧ ((𝐶 ·R -1R) +R 𝐴) ∈ R𝐶R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
157, 13, 8, 14syl3anc 1217 . . . . . 6 ((𝐶R𝐴R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
16 pn0sr 7603 . . . . . . . . . . 11 (𝐶R → (𝐶 +R (𝐶 ·R -1R)) = 0R)
1716oveq1d 5797 . . . . . . . . . 10 (𝐶R → ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴))
1817adantr 274 . . . . . . . . 9 ((𝐶R𝐴R) → ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴))
19 addasssrg 7588 . . . . . . . . . 10 ((𝐶R ∧ (𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
208, 10, 11, 19syl3anc 1217 . . . . . . . . 9 ((𝐶R𝐴R) → ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
21 0r 7582 . . . . . . . . . . 11 0RR
2221a1i 9 . . . . . . . . . 10 ((𝐶R𝐴R) → 0RR)
23 addcomsrg 7587 . . . . . . . . . 10 ((0RR𝐴R) → (0R +R 𝐴) = (𝐴 +R 0R))
2422, 11, 23syl2anc 409 . . . . . . . . 9 ((𝐶R𝐴R) → (0R +R 𝐴) = (𝐴 +R 0R))
2518, 20, 243eqtr3d 2181 . . . . . . . 8 ((𝐶R𝐴R) → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = (𝐴 +R 0R))
26 0idsr 7599 . . . . . . . . 9 (𝐴R → (𝐴 +R 0R) = 𝐴)
2726adantl 275 . . . . . . . 8 ((𝐶R𝐴R) → (𝐴 +R 0R) = 𝐴)
2825, 27eqtrd 2173 . . . . . . 7 ((𝐶R𝐴R) → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = 𝐴)
2928breq2d 3949 . . . . . 6 ((𝐶R𝐴R) → ((𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) ↔ (𝐶 +R -1R) <R 𝐴))
3015, 29bitrd 187 . . . . 5 ((𝐶R𝐴R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R 𝐴))
316, 9mpan2 422 . . . . . . . 8 (𝐶R → (𝐶 ·R -1R) ∈ R)
3231, 12sylan 281 . . . . . . 7 ((𝐶R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
33 df-nr 7559 . . . . . . . 8 R = ((P × P) / ~R )
34 breq2 3941 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ -1R <R ((𝐶 ·R -1R) +R 𝐴)))
35 eqeq2 2150 . . . . . . . . . 10 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
3635rexbidv 2439 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
3734, 36imbi12d 233 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ((-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ) ↔ (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴))))
38 df-m1r 7565 . . . . . . . . . . . 12 -1R = [⟨1P, (1P +P 1P)⟩] ~R
3938breq1i 3944 . . . . . . . . . . 11 (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R )
40 1pr 7386 . . . . . . . . . . . . . . 15 1PP
41 addassprg 7411 . . . . . . . . . . . . . . 15 ((1PP ∧ 1PP𝑦P) → ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦)))
4240, 40, 41mp3an12 1306 . . . . . . . . . . . . . 14 (𝑦P → ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦)))
4342breq2d 3949 . . . . . . . . . . . . 13 (𝑦P → ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
4443adantr 274 . . . . . . . . . . . 12 ((𝑦P𝑧P) → ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
45 addclpr 7369 . . . . . . . . . . . . . 14 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
4640, 40, 45mp2an 423 . . . . . . . . . . . . 13 (1P +P 1P) ∈ P
47 ltsrprg 7579 . . . . . . . . . . . . 13 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (𝑦P𝑧P)) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦)))
4840, 46, 47mpanl12 433 . . . . . . . . . . . 12 ((𝑦P𝑧P) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦)))
49 simpr 109 . . . . . . . . . . . . 13 ((𝑦P𝑧P) → 𝑧P)
5040a1i 9 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → 1PP)
51 simpl 108 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → 𝑦P)
52 addclpr 7369 . . . . . . . . . . . . . 14 ((1PP𝑦P) → (1P +P 𝑦) ∈ P)
5350, 51, 52syl2anc 409 . . . . . . . . . . . . 13 ((𝑦P𝑧P) → (1P +P 𝑦) ∈ P)
54 ltaprg 7451 . . . . . . . . . . . . 13 ((𝑧P ∧ (1P +P 𝑦) ∈ P ∧ 1PP) → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
5549, 53, 50, 54syl3anc 1217 . . . . . . . . . . . 12 ((𝑦P𝑧P) → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
5644, 48, 553bitr4d 219 . . . . . . . . . . 11 ((𝑦P𝑧P) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦)))
5739, 56syl5bb 191 . . . . . . . . . 10 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦)))
58 ltexpri 7445 . . . . . . . . . 10 (𝑧<P (1P +P 𝑦) → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
5957, 58syl6bi 162 . . . . . . . . 9 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
60 enreceq 7568 . . . . . . . . . . . . 13 (((𝑥P ∧ 1PP) ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
6140, 60mpanl2 432 . . . . . . . . . . . 12 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
6249adantl 275 . . . . . . . . . . . . . 14 ((𝑥P ∧ (𝑦P𝑧P)) → 𝑧P)
63 simpl 108 . . . . . . . . . . . . . 14 ((𝑥P ∧ (𝑦P𝑧P)) → 𝑥P)
64 addcomprg 7410 . . . . . . . . . . . . . 14 ((𝑧P𝑥P) → (𝑧 +P 𝑥) = (𝑥 +P 𝑧))
6562, 63, 64syl2anc 409 . . . . . . . . . . . . 13 ((𝑥P ∧ (𝑦P𝑧P)) → (𝑧 +P 𝑥) = (𝑥 +P 𝑧))
6665eqeq1d 2149 . . . . . . . . . . . 12 ((𝑥P ∧ (𝑦P𝑧P)) → ((𝑧 +P 𝑥) = (1P +P 𝑦) ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
6761, 66bitr4d 190 . . . . . . . . . . 11 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
6867ancoms 266 . . . . . . . . . 10 (((𝑦P𝑧P) ∧ 𝑥P) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
6968rexbidva 2435 . . . . . . . . 9 ((𝑦P𝑧P) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
7059, 69sylibrd 168 . . . . . . . 8 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ))
7133, 37, 70ecoptocl 6524 . . . . . . 7 (((𝐶 ·R -1R) +R 𝐴) ∈ R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
7232, 71syl 14 . . . . . 6 ((𝐶R𝐴R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
73 oveq2 5790 . . . . . . . . 9 ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
7473, 28sylan9eqr 2195 . . . . . . . 8 (((𝐶R𝐴R) ∧ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
7574ex 114 . . . . . . 7 ((𝐶R𝐴R) → ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
7675reximdv 2536 . . . . . 6 ((𝐶R𝐴R) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
7772, 76syld 45 . . . . 5 ((𝐶R𝐴R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
7830, 77sylbird 169 . . . 4 ((𝐶R𝐴R) → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
794, 5, 78sylc 62 . . 3 ((𝐶R ∧ (𝐶 +R -1R) <R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
8079ex 114 . 2 (𝐶R → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
81 mappsrprg 7636 . . . . 5 ((𝑥P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ))
82 breq2 3941 . . . . 5 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ (𝐶 +R -1R) <R 𝐴))
8381, 82syl5ibcom 154 . . . 4 ((𝑥P𝐶R) → ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴))
8483ancoms 266 . . 3 ((𝐶R𝑥P) → ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴))
8584rexlimdva 2552 . 2 (𝐶R → (∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴))
8680, 85impbid 128 1 (𝐶R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wrex 2418  cop 3535   class class class wbr 3937  (class class class)co 5782  [cec 6435  Pcnp 7123  1Pc1p 7124   +P cpp 7125  <P cltp 7127   ~R cer 7128  Rcnr 7129  0Rc0r 7130  -1Rcm1r 7132   +R cplr 7133   ·R cmr 7134   <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-iltp 7302  df-enr 7558  df-nr 7559  df-plr 7560  df-mr 7561  df-ltr 7562  df-0r 7563  df-1r 7564  df-m1r 7565
This theorem is referenced by:  suplocsrlemb  7638  suplocsrlempr  7639  suplocsrlem  7640
  Copyright terms: Public domain W3C validator