Step | Hyp | Ref
| Expression |
1 | | ltrelsr 7687 |
. . . . . . 7
⊢
<R ⊆ (R ×
R) |
2 | 1 | brel 4661 |
. . . . . 6
⊢ ((𝐶 +R
-1R) <R 𝐴 → ((𝐶 +R
-1R) ∈ R ∧ 𝐴 ∈ R)) |
3 | 2 | simprd 113 |
. . . . 5
⊢ ((𝐶 +R
-1R) <R 𝐴 → 𝐴 ∈ R) |
4 | 3 | anim2i 340 |
. . . 4
⊢ ((𝐶 ∈ R ∧
(𝐶
+R -1R)
<R 𝐴) → (𝐶 ∈ R ∧ 𝐴 ∈
R)) |
5 | | simpr 109 |
. . . 4
⊢ ((𝐶 ∈ R ∧
(𝐶
+R -1R)
<R 𝐴) → (𝐶 +R
-1R) <R 𝐴) |
6 | | m1r 7701 |
. . . . . . . 8
⊢
-1R ∈ R |
7 | 6 | a1i 9 |
. . . . . . 7
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ -1R ∈ R) |
8 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ 𝐶 ∈
R) |
9 | | mulclsr 7703 |
. . . . . . . . 9
⊢ ((𝐶 ∈ R ∧
-1R ∈ R) → (𝐶 ·R
-1R) ∈ R) |
10 | 8, 7, 9 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (𝐶
·R -1R) ∈
R) |
11 | | simpr 109 |
. . . . . . . 8
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ 𝐴 ∈
R) |
12 | | addclsr 7702 |
. . . . . . . 8
⊢ (((𝐶
·R -1R) ∈
R ∧ 𝐴
∈ R) → ((𝐶 ·R
-1R) +R 𝐴) ∈ R) |
13 | 10, 11, 12 | syl2anc 409 |
. . . . . . 7
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ ((𝐶
·R -1R)
+R 𝐴) ∈ R) |
14 | | ltasrg 7719 |
. . . . . . 7
⊢
((-1R ∈ R ∧ ((𝐶
·R -1R)
+R 𝐴) ∈ R ∧ 𝐶 ∈ R) →
(-1R <R ((𝐶
·R -1R)
+R 𝐴) ↔ (𝐶 +R
-1R) <R (𝐶 +R ((𝐶
·R -1R)
+R 𝐴)))) |
15 | 7, 13, 8, 14 | syl3anc 1233 |
. . . . . 6
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (-1R <R ((𝐶
·R -1R)
+R 𝐴) ↔ (𝐶 +R
-1R) <R (𝐶 +R ((𝐶
·R -1R)
+R 𝐴)))) |
16 | | pn0sr 7720 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ R →
(𝐶
+R (𝐶 ·R
-1R)) = 0R) |
17 | 16 | oveq1d 5865 |
. . . . . . . . . 10
⊢ (𝐶 ∈ R →
((𝐶
+R (𝐶 ·R
-1R)) +R 𝐴) = (0R
+R 𝐴)) |
18 | 17 | adantr 274 |
. . . . . . . . 9
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ ((𝐶
+R (𝐶 ·R
-1R)) +R 𝐴) = (0R
+R 𝐴)) |
19 | | addasssrg 7705 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ R ∧
(𝐶
·R -1R) ∈
R ∧ 𝐴
∈ R) → ((𝐶 +R (𝐶
·R -1R))
+R 𝐴) = (𝐶 +R ((𝐶
·R -1R)
+R 𝐴))) |
20 | 8, 10, 11, 19 | syl3anc 1233 |
. . . . . . . . 9
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ ((𝐶
+R (𝐶 ·R
-1R)) +R 𝐴) = (𝐶 +R ((𝐶
·R -1R)
+R 𝐴))) |
21 | | 0r 7699 |
. . . . . . . . . . 11
⊢
0R ∈ R |
22 | 21 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ 0R ∈ R) |
23 | | addcomsrg 7704 |
. . . . . . . . . 10
⊢
((0R ∈ R ∧ 𝐴 ∈ R) →
(0R +R 𝐴) = (𝐴 +R
0R)) |
24 | 22, 11, 23 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (0R +R 𝐴) = (𝐴 +R
0R)) |
25 | 18, 20, 24 | 3eqtr3d 2211 |
. . . . . . . 8
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (𝐶
+R ((𝐶 ·R
-1R) +R 𝐴)) = (𝐴 +R
0R)) |
26 | | 0idsr 7716 |
. . . . . . . . 9
⊢ (𝐴 ∈ R →
(𝐴
+R 0R) = 𝐴) |
27 | 26 | adantl 275 |
. . . . . . . 8
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (𝐴
+R 0R) = 𝐴) |
28 | 25, 27 | eqtrd 2203 |
. . . . . . 7
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (𝐶
+R ((𝐶 ·R
-1R) +R 𝐴)) = 𝐴) |
29 | 28 | breq2d 3999 |
. . . . . 6
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ ((𝐶
+R -1R)
<R (𝐶 +R ((𝐶
·R -1R)
+R 𝐴)) ↔ (𝐶 +R
-1R) <R 𝐴)) |
30 | 15, 29 | bitrd 187 |
. . . . 5
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (-1R <R ((𝐶
·R -1R)
+R 𝐴) ↔ (𝐶 +R
-1R) <R 𝐴)) |
31 | 6, 9 | mpan2 423 |
. . . . . . . 8
⊢ (𝐶 ∈ R →
(𝐶
·R -1R) ∈
R) |
32 | 31, 12 | sylan 281 |
. . . . . . 7
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ ((𝐶
·R -1R)
+R 𝐴) ∈ R) |
33 | | df-nr 7676 |
. . . . . . . 8
⊢
R = ((P × P) /
~R ) |
34 | | breq2 3991 |
. . . . . . . . 9
⊢
([〈𝑦, 𝑧〉]
~R = ((𝐶 ·R
-1R) +R 𝐴) → (-1R
<R [〈𝑦, 𝑧〉] ~R ↔
-1R <R ((𝐶 ·R
-1R) +R 𝐴))) |
35 | | eqeq2 2180 |
. . . . . . . . . 10
⊢
([〈𝑦, 𝑧〉]
~R = ((𝐶 ·R
-1R) +R 𝐴) → ([〈𝑥, 1P〉]
~R = [〈𝑦, 𝑧〉] ~R ↔
[〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴))) |
36 | 35 | rexbidv 2471 |
. . . . . . . . 9
⊢
([〈𝑦, 𝑧〉]
~R = ((𝐶 ·R
-1R) +R 𝐴) → (∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R ↔
∃𝑥 ∈
P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴))) |
37 | 34, 36 | imbi12d 233 |
. . . . . . . 8
⊢
([〈𝑦, 𝑧〉]
~R = ((𝐶 ·R
-1R) +R 𝐴) → ((-1R
<R [〈𝑦, 𝑧〉] ~R →
∃𝑥 ∈
P [〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R ) ↔
(-1R <R ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴)))) |
38 | | df-m1r 7682 |
. . . . . . . . . . . 12
⊢
-1R = [〈1P,
(1P +P
1P)〉]
~R |
39 | 38 | breq1i 3994 |
. . . . . . . . . . 11
⊢
(-1R <R
[〈𝑦, 𝑧〉]
~R ↔ [〈1P,
(1P +P
1P)〉] ~R
<R [〈𝑦, 𝑧〉] ~R
) |
40 | | 1pr 7503 |
. . . . . . . . . . . . . . 15
⊢
1P ∈ P |
41 | | addassprg 7528 |
. . . . . . . . . . . . . . 15
⊢
((1P ∈ P ∧
1P ∈ P ∧ 𝑦 ∈ P) →
((1P +P
1P) +P 𝑦) = (1P
+P (1P
+P 𝑦))) |
42 | 40, 40, 41 | mp3an12 1322 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ P →
((1P +P
1P) +P 𝑦) = (1P
+P (1P
+P 𝑦))) |
43 | 42 | breq2d 3999 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ P →
((1P +P 𝑧)<P
((1P +P
1P) +P 𝑦) ↔ (1P
+P 𝑧)<P
(1P +P
(1P +P 𝑦)))) |
44 | 43 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ ((1P +P 𝑧)<P
((1P +P
1P) +P 𝑦) ↔ (1P
+P 𝑧)<P
(1P +P
(1P +P 𝑦)))) |
45 | | addclpr 7486 |
. . . . . . . . . . . . . 14
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
46 | 40, 40, 45 | mp2an 424 |
. . . . . . . . . . . . 13
⊢
(1P +P
1P) ∈ P |
47 | | ltsrprg 7696 |
. . . . . . . . . . . . 13
⊢
(((1P ∈ P ∧
(1P +P
1P) ∈ P) ∧ (𝑦 ∈ P ∧ 𝑧 ∈ P)) →
([〈1P, (1P
+P 1P)〉]
~R <R [〈𝑦, 𝑧〉] ~R ↔
(1P +P 𝑧)<P
((1P +P
1P) +P 𝑦))) |
48 | 40, 46, 47 | mpanl12 434 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ ([〈1P, (1P
+P 1P)〉]
~R <R [〈𝑦, 𝑧〉] ~R ↔
(1P +P 𝑧)<P
((1P +P
1P) +P 𝑦))) |
49 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ 𝑧 ∈
P) |
50 | 40 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ 1P ∈ P) |
51 | | simpl 108 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ 𝑦 ∈
P) |
52 | | addclpr 7486 |
. . . . . . . . . . . . . 14
⊢
((1P ∈ P ∧ 𝑦 ∈ P) →
(1P +P 𝑦) ∈ P) |
53 | 50, 51, 52 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (1P +P 𝑦) ∈
P) |
54 | | ltaprg 7568 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ P ∧
(1P +P 𝑦) ∈ P ∧
1P ∈ P) → (𝑧<P
(1P +P 𝑦) ↔ (1P
+P 𝑧)<P
(1P +P
(1P +P 𝑦)))) |
55 | 49, 53, 50, 54 | syl3anc 1233 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑧<P
(1P +P 𝑦) ↔ (1P
+P 𝑧)<P
(1P +P
(1P +P 𝑦)))) |
56 | 44, 48, 55 | 3bitr4d 219 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ ([〈1P, (1P
+P 1P)〉]
~R <R [〈𝑦, 𝑧〉] ~R ↔
𝑧<P
(1P +P 𝑦))) |
57 | 39, 56 | syl5bb 191 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (-1R <R
[〈𝑦, 𝑧〉]
~R ↔ 𝑧<P
(1P +P 𝑦))) |
58 | | ltexpri 7562 |
. . . . . . . . . 10
⊢ (𝑧<P
(1P +P 𝑦) → ∃𝑥 ∈ P (𝑧 +P 𝑥) = (1P
+P 𝑦)) |
59 | 57, 58 | syl6bi 162 |
. . . . . . . . 9
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (-1R <R
[〈𝑦, 𝑧〉]
~R → ∃𝑥 ∈ P (𝑧 +P 𝑥) = (1P
+P 𝑦))) |
60 | | enreceq 7685 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ P ∧
1P ∈ P) ∧ (𝑦 ∈ P ∧ 𝑧 ∈ P)) →
([〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R ↔
(𝑥
+P 𝑧) = (1P
+P 𝑦))) |
61 | 40, 60 | mpanl2 433 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ P ∧
(𝑦 ∈ P
∧ 𝑧 ∈
P)) → ([〈𝑥, 1P〉]
~R = [〈𝑦, 𝑧〉] ~R ↔
(𝑥
+P 𝑧) = (1P
+P 𝑦))) |
62 | 49 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ P ∧
(𝑦 ∈ P
∧ 𝑧 ∈
P)) → 𝑧
∈ P) |
63 | | simpl 108 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ P ∧
(𝑦 ∈ P
∧ 𝑧 ∈
P)) → 𝑥
∈ P) |
64 | | addcomprg 7527 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ P ∧
𝑥 ∈ P)
→ (𝑧
+P 𝑥) = (𝑥 +P 𝑧)) |
65 | 62, 63, 64 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ P ∧
(𝑦 ∈ P
∧ 𝑧 ∈
P)) → (𝑧
+P 𝑥) = (𝑥 +P 𝑧)) |
66 | 65 | eqeq1d 2179 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ P ∧
(𝑦 ∈ P
∧ 𝑧 ∈
P)) → ((𝑧 +P 𝑥) = (1P
+P 𝑦) ↔ (𝑥 +P 𝑧) = (1P
+P 𝑦))) |
67 | 61, 66 | bitr4d 190 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ P ∧
(𝑦 ∈ P
∧ 𝑧 ∈
P)) → ([〈𝑥, 1P〉]
~R = [〈𝑦, 𝑧〉] ~R ↔
(𝑧
+P 𝑥) = (1P
+P 𝑦))) |
68 | 67 | ancoms 266 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑥 ∈
P) → ([〈𝑥, 1P〉]
~R = [〈𝑦, 𝑧〉] ~R ↔
(𝑧
+P 𝑥) = (1P
+P 𝑦))) |
69 | 68 | rexbidva 2467 |
. . . . . . . . 9
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑥 ∈
P [〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R ↔
∃𝑥 ∈
P (𝑧
+P 𝑥) = (1P
+P 𝑦))) |
70 | 59, 69 | sylibrd 168 |
. . . . . . . 8
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (-1R <R
[〈𝑦, 𝑧〉]
~R → ∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R
)) |
71 | 33, 37, 70 | ecoptocl 6596 |
. . . . . . 7
⊢ (((𝐶
·R -1R)
+R 𝐴) ∈ R →
(-1R <R ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴))) |
72 | 32, 71 | syl 14 |
. . . . . 6
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (-1R <R ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴))) |
73 | | oveq2 5858 |
. . . . . . . . 9
⊢
([〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴) → (𝐶 +R [〈𝑥,
1P〉] ~R ) = (𝐶 +R
((𝐶
·R -1R)
+R 𝐴))) |
74 | 73, 28 | sylan9eqr 2225 |
. . . . . . . 8
⊢ (((𝐶 ∈ R ∧
𝐴 ∈ R)
∧ [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴)) → (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴) |
75 | 74 | ex 114 |
. . . . . . 7
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ ([〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴) → (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
76 | 75 | reximdv 2571 |
. . . . . 6
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (∃𝑥 ∈
P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
77 | 72, 76 | syld 45 |
. . . . 5
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ (-1R <R ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
78 | 30, 77 | sylbird 169 |
. . . 4
⊢ ((𝐶 ∈ R ∧
𝐴 ∈ R)
→ ((𝐶
+R -1R)
<R 𝐴 → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
79 | 4, 5, 78 | sylc 62 |
. . 3
⊢ ((𝐶 ∈ R ∧
(𝐶
+R -1R)
<R 𝐴) → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴) |
80 | 79 | ex 114 |
. 2
⊢ (𝐶 ∈ R →
((𝐶
+R -1R)
<R 𝐴 → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
81 | | mappsrprg 7753 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝐶 ∈ R)
→ (𝐶
+R -1R)
<R (𝐶 +R [〈𝑥,
1P〉] ~R
)) |
82 | | breq2 3991 |
. . . . 5
⊢ ((𝐶 +R
[〈𝑥,
1P〉] ~R ) = 𝐴 → ((𝐶 +R
-1R) <R (𝐶 +R [〈𝑥,
1P〉] ~R ) ↔ (𝐶 +R
-1R) <R 𝐴)) |
83 | 81, 82 | syl5ibcom 154 |
. . . 4
⊢ ((𝑥 ∈ P ∧
𝐶 ∈ R)
→ ((𝐶
+R [〈𝑥, 1P〉]
~R ) = 𝐴 → (𝐶 +R
-1R) <R 𝐴)) |
84 | 83 | ancoms 266 |
. . 3
⊢ ((𝐶 ∈ R ∧
𝑥 ∈ P)
→ ((𝐶
+R [〈𝑥, 1P〉]
~R ) = 𝐴 → (𝐶 +R
-1R) <R 𝐴)) |
85 | 84 | rexlimdva 2587 |
. 2
⊢ (𝐶 ∈ R →
(∃𝑥 ∈
P (𝐶
+R [〈𝑥, 1P〉]
~R ) = 𝐴 → (𝐶 +R
-1R) <R 𝐴)) |
86 | 80, 85 | impbid 128 |
1
⊢ (𝐶 ∈ R →
((𝐶
+R -1R)
<R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |