ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map2psrprg GIF version

Theorem map2psrprg 7767
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
map2psrprg (𝐶R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶

Proof of Theorem map2psrprg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 7700 . . . . . . 7 <R ⊆ (R × R)
21brel 4663 . . . . . 6 ((𝐶 +R -1R) <R 𝐴 → ((𝐶 +R -1R) ∈ R𝐴R))
32simprd 113 . . . . 5 ((𝐶 +R -1R) <R 𝐴𝐴R)
43anim2i 340 . . . 4 ((𝐶R ∧ (𝐶 +R -1R) <R 𝐴) → (𝐶R𝐴R))
5 simpr 109 . . . 4 ((𝐶R ∧ (𝐶 +R -1R) <R 𝐴) → (𝐶 +R -1R) <R 𝐴)
6 m1r 7714 . . . . . . . 8 -1RR
76a1i 9 . . . . . . 7 ((𝐶R𝐴R) → -1RR)
8 simpl 108 . . . . . . . . 9 ((𝐶R𝐴R) → 𝐶R)
9 mulclsr 7716 . . . . . . . . 9 ((𝐶R ∧ -1RR) → (𝐶 ·R -1R) ∈ R)
108, 7, 9syl2anc 409 . . . . . . . 8 ((𝐶R𝐴R) → (𝐶 ·R -1R) ∈ R)
11 simpr 109 . . . . . . . 8 ((𝐶R𝐴R) → 𝐴R)
12 addclsr 7715 . . . . . . . 8 (((𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
1310, 11, 12syl2anc 409 . . . . . . 7 ((𝐶R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
14 ltasrg 7732 . . . . . . 7 ((-1RR ∧ ((𝐶 ·R -1R) +R 𝐴) ∈ R𝐶R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
157, 13, 8, 14syl3anc 1233 . . . . . 6 ((𝐶R𝐴R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
16 pn0sr 7733 . . . . . . . . . . 11 (𝐶R → (𝐶 +R (𝐶 ·R -1R)) = 0R)
1716oveq1d 5868 . . . . . . . . . 10 (𝐶R → ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴))
1817adantr 274 . . . . . . . . 9 ((𝐶R𝐴R) → ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴))
19 addasssrg 7718 . . . . . . . . . 10 ((𝐶R ∧ (𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
208, 10, 11, 19syl3anc 1233 . . . . . . . . 9 ((𝐶R𝐴R) → ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
21 0r 7712 . . . . . . . . . . 11 0RR
2221a1i 9 . . . . . . . . . 10 ((𝐶R𝐴R) → 0RR)
23 addcomsrg 7717 . . . . . . . . . 10 ((0RR𝐴R) → (0R +R 𝐴) = (𝐴 +R 0R))
2422, 11, 23syl2anc 409 . . . . . . . . 9 ((𝐶R𝐴R) → (0R +R 𝐴) = (𝐴 +R 0R))
2518, 20, 243eqtr3d 2211 . . . . . . . 8 ((𝐶R𝐴R) → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = (𝐴 +R 0R))
26 0idsr 7729 . . . . . . . . 9 (𝐴R → (𝐴 +R 0R) = 𝐴)
2726adantl 275 . . . . . . . 8 ((𝐶R𝐴R) → (𝐴 +R 0R) = 𝐴)
2825, 27eqtrd 2203 . . . . . . 7 ((𝐶R𝐴R) → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = 𝐴)
2928breq2d 4001 . . . . . 6 ((𝐶R𝐴R) → ((𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) ↔ (𝐶 +R -1R) <R 𝐴))
3015, 29bitrd 187 . . . . 5 ((𝐶R𝐴R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R 𝐴))
316, 9mpan2 423 . . . . . . . 8 (𝐶R → (𝐶 ·R -1R) ∈ R)
3231, 12sylan 281 . . . . . . 7 ((𝐶R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
33 df-nr 7689 . . . . . . . 8 R = ((P × P) / ~R )
34 breq2 3993 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ -1R <R ((𝐶 ·R -1R) +R 𝐴)))
35 eqeq2 2180 . . . . . . . . . 10 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
3635rexbidv 2471 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
3734, 36imbi12d 233 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ((-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ) ↔ (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴))))
38 df-m1r 7695 . . . . . . . . . . . 12 -1R = [⟨1P, (1P +P 1P)⟩] ~R
3938breq1i 3996 . . . . . . . . . . 11 (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R )
40 1pr 7516 . . . . . . . . . . . . . . 15 1PP
41 addassprg 7541 . . . . . . . . . . . . . . 15 ((1PP ∧ 1PP𝑦P) → ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦)))
4240, 40, 41mp3an12 1322 . . . . . . . . . . . . . 14 (𝑦P → ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦)))
4342breq2d 4001 . . . . . . . . . . . . 13 (𝑦P → ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
4443adantr 274 . . . . . . . . . . . 12 ((𝑦P𝑧P) → ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
45 addclpr 7499 . . . . . . . . . . . . . 14 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
4640, 40, 45mp2an 424 . . . . . . . . . . . . 13 (1P +P 1P) ∈ P
47 ltsrprg 7709 . . . . . . . . . . . . 13 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (𝑦P𝑧P)) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦)))
4840, 46, 47mpanl12 434 . . . . . . . . . . . 12 ((𝑦P𝑧P) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦)))
49 simpr 109 . . . . . . . . . . . . 13 ((𝑦P𝑧P) → 𝑧P)
5040a1i 9 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → 1PP)
51 simpl 108 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → 𝑦P)
52 addclpr 7499 . . . . . . . . . . . . . 14 ((1PP𝑦P) → (1P +P 𝑦) ∈ P)
5350, 51, 52syl2anc 409 . . . . . . . . . . . . 13 ((𝑦P𝑧P) → (1P +P 𝑦) ∈ P)
54 ltaprg 7581 . . . . . . . . . . . . 13 ((𝑧P ∧ (1P +P 𝑦) ∈ P ∧ 1PP) → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
5549, 53, 50, 54syl3anc 1233 . . . . . . . . . . . 12 ((𝑦P𝑧P) → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
5644, 48, 553bitr4d 219 . . . . . . . . . . 11 ((𝑦P𝑧P) → ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦)))
5739, 56syl5bb 191 . . . . . . . . . 10 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦)))
58 ltexpri 7575 . . . . . . . . . 10 (𝑧<P (1P +P 𝑦) → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
5957, 58syl6bi 162 . . . . . . . . 9 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
60 enreceq 7698 . . . . . . . . . . . . 13 (((𝑥P ∧ 1PP) ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
6140, 60mpanl2 433 . . . . . . . . . . . 12 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
6249adantl 275 . . . . . . . . . . . . . 14 ((𝑥P ∧ (𝑦P𝑧P)) → 𝑧P)
63 simpl 108 . . . . . . . . . . . . . 14 ((𝑥P ∧ (𝑦P𝑧P)) → 𝑥P)
64 addcomprg 7540 . . . . . . . . . . . . . 14 ((𝑧P𝑥P) → (𝑧 +P 𝑥) = (𝑥 +P 𝑧))
6562, 63, 64syl2anc 409 . . . . . . . . . . . . 13 ((𝑥P ∧ (𝑦P𝑧P)) → (𝑧 +P 𝑥) = (𝑥 +P 𝑧))
6665eqeq1d 2179 . . . . . . . . . . . 12 ((𝑥P ∧ (𝑦P𝑧P)) → ((𝑧 +P 𝑥) = (1P +P 𝑦) ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
6761, 66bitr4d 190 . . . . . . . . . . 11 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
6867ancoms 266 . . . . . . . . . 10 (((𝑦P𝑧P) ∧ 𝑥P) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
6968rexbidva 2467 . . . . . . . . 9 ((𝑦P𝑧P) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
7059, 69sylibrd 168 . . . . . . . 8 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ))
7133, 37, 70ecoptocl 6600 . . . . . . 7 (((𝐶 ·R -1R) +R 𝐴) ∈ R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
7232, 71syl 14 . . . . . 6 ((𝐶R𝐴R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
73 oveq2 5861 . . . . . . . . 9 ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
7473, 28sylan9eqr 2225 . . . . . . . 8 (((𝐶R𝐴R) ∧ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
7574ex 114 . . . . . . 7 ((𝐶R𝐴R) → ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
7675reximdv 2571 . . . . . 6 ((𝐶R𝐴R) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
7772, 76syld 45 . . . . 5 ((𝐶R𝐴R) → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
7830, 77sylbird 169 . . . 4 ((𝐶R𝐴R) → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
794, 5, 78sylc 62 . . 3 ((𝐶R ∧ (𝐶 +R -1R) <R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
8079ex 114 . 2 (𝐶R → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
81 mappsrprg 7766 . . . . 5 ((𝑥P𝐶R) → (𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ))
82 breq2 3993 . . . . 5 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ (𝐶 +R -1R) <R 𝐴))
8381, 82syl5ibcom 154 . . . 4 ((𝑥P𝐶R) → ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴))
8483ancoms 266 . . 3 ((𝐶R𝑥P) → ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴))
8584rexlimdva 2587 . 2 (𝐶R → (∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴))
8680, 85impbid 128 1 (𝐶R → ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  cop 3586   class class class wbr 3989  (class class class)co 5853  [cec 6511  Pcnp 7253  1Pc1p 7254   +P cpp 7255  <P cltp 7257   ~R cer 7258  Rcnr 7259  0Rc0r 7260  -1Rcm1r 7262   +R cplr 7263   ·R cmr 7264   <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-iltp 7432  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-ltr 7692  df-0r 7693  df-1r 7694  df-m1r 7695
This theorem is referenced by:  suplocsrlemb  7768  suplocsrlempr  7769  suplocsrlem  7770
  Copyright terms: Public domain W3C validator