ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqnprm GIF version

Theorem sqnprm 12079
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
sqnprm (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ)

Proof of Theorem sqnprm
StepHypRef Expression
1 zre 9205 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21adantr 274 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℝ)
3 absresq 11031 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
42, 3syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = (𝐴↑2))
52recnd 7937 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℂ)
65abscld 11134 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℝ)
76recnd 7937 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℂ)
87sqvald 10595 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
94, 8eqtr3d 2205 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) = ((abs‘𝐴) · (abs‘𝐴)))
10 simpr 109 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ ℙ)
119, 10eqeltrrd 2248 . 2 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
12 nn0abscl 11038 . . . . . 6 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
1312adantr 274 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℕ0)
1413nn0zd 9321 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℤ)
15 sq1 10558 . . . . . 6 (1↑2) = 1
16 prmuz2 12074 . . . . . . . . 9 ((𝐴↑2) ∈ ℙ → (𝐴↑2) ∈ (ℤ‘2))
1716adantl 275 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ (ℤ‘2))
18 eluz2b1 9549 . . . . . . . . 9 ((𝐴↑2) ∈ (ℤ‘2) ↔ ((𝐴↑2) ∈ ℤ ∧ 1 < (𝐴↑2)))
1918simprbi 273 . . . . . . . 8 ((𝐴↑2) ∈ (ℤ‘2) → 1 < (𝐴↑2))
2017, 19syl 14 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (𝐴↑2))
2120, 4breqtrrd 4015 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < ((abs‘𝐴)↑2))
2215, 21eqbrtrid 4022 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1↑2) < ((abs‘𝐴)↑2))
235absge0d 11137 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 0 ≤ (abs‘𝐴))
24 1re 7908 . . . . . . 7 1 ∈ ℝ
25 0le1 8389 . . . . . . 7 0 ≤ 1
26 lt2sq 10538 . . . . . . 7 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
2724, 25, 26mpanl12 434 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
286, 23, 27syl2anc 409 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
2922, 28mpbird 166 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (abs‘𝐴))
30 eluz2b1 9549 . . . 4 ((abs‘𝐴) ∈ (ℤ‘2) ↔ ((abs‘𝐴) ∈ ℤ ∧ 1 < (abs‘𝐴)))
3114, 29, 30sylanbrc 415 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ (ℤ‘2))
32 nprm 12066 . . 3 (((abs‘𝐴) ∈ (ℤ‘2) ∧ (abs‘𝐴) ∈ (ℤ‘2)) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
3331, 31, 32syl2anc 409 . 2 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
3411, 33pm2.65da 656 1 (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141   class class class wbr 3987  cfv 5196  (class class class)co 5851  cr 7762  0cc0 7763  1c1 7764   · cmul 7768   < clt 7943  cle 7944  2c2 8918  0cn0 9124  cz 9201  cuz 9476  cexp 10464  abscabs 10950  cprime 12050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6510  df-en 6716  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-seqfrec 10391  df-exp 10465  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-dvds 11739  df-prm 12051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator