![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqnprm | GIF version |
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
sqnprm | ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9292 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℝ) |
3 | absresq 11128 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = (𝐴↑2)) |
5 | 2 | recnd 8021 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℂ) |
6 | 5 | abscld 11231 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℝ) |
7 | 6 | recnd 8021 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℂ) |
8 | 7 | sqvald 10691 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
9 | 4, 8 | eqtr3d 2224 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
10 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ ℙ) | |
11 | 9, 10 | eqeltrrd 2267 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) |
12 | nn0abscl 11135 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | |
13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℕ0) |
14 | 13 | nn0zd 9408 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℤ) |
15 | sq1 10654 | . . . . . 6 ⊢ (1↑2) = 1 | |
16 | prmuz2 12174 | . . . . . . . . 9 ⊢ ((𝐴↑2) ∈ ℙ → (𝐴↑2) ∈ (ℤ≥‘2)) | |
17 | 16 | adantl 277 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ (ℤ≥‘2)) |
18 | eluz2b1 9637 | . . . . . . . . 9 ⊢ ((𝐴↑2) ∈ (ℤ≥‘2) ↔ ((𝐴↑2) ∈ ℤ ∧ 1 < (𝐴↑2))) | |
19 | 18 | simprbi 275 | . . . . . . . 8 ⊢ ((𝐴↑2) ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) |
20 | 17, 19 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (𝐴↑2)) |
21 | 20, 4 | breqtrrd 4049 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < ((abs‘𝐴)↑2)) |
22 | 15, 21 | eqbrtrid 4056 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1↑2) < ((abs‘𝐴)↑2)) |
23 | 5 | absge0d 11234 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 0 ≤ (abs‘𝐴)) |
24 | 1re 7991 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
25 | 0le1 8473 | . . . . . . 7 ⊢ 0 ≤ 1 | |
26 | lt2sq 10634 | . . . . . . 7 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) | |
27 | 24, 25, 26 | mpanl12 436 | . . . . . 6 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) |
28 | 6, 23, 27 | syl2anc 411 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) |
29 | 22, 28 | mpbird 167 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (abs‘𝐴)) |
30 | eluz2b1 9637 | . . . 4 ⊢ ((abs‘𝐴) ∈ (ℤ≥‘2) ↔ ((abs‘𝐴) ∈ ℤ ∧ 1 < (abs‘𝐴))) | |
31 | 14, 29, 30 | sylanbrc 417 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ (ℤ≥‘2)) |
32 | nprm 12166 | . . 3 ⊢ (((abs‘𝐴) ∈ (ℤ≥‘2) ∧ (abs‘𝐴) ∈ (ℤ≥‘2)) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) | |
33 | 31, 31, 32 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) |
34 | 11, 33 | pm2.65da 662 | 1 ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 class class class wbr 4021 ‘cfv 5238 (class class class)co 5900 ℝcr 7845 0cc0 7846 1c1 7847 · cmul 7851 < clt 8027 ≤ cle 8028 2c2 9005 ℕ0cn0 9211 ℤcz 9288 ℤ≥cuz 9563 ↑cexp 10559 abscabs 11047 ℙcprime 12150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-pre-mulext 7964 ax-arch 7965 ax-caucvg 7966 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-po 4317 df-iso 4318 df-iord 4387 df-on 4389 df-ilim 4390 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-recs 6334 df-frec 6420 df-1o 6445 df-2o 6446 df-er 6563 df-en 6771 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-ap 8574 df-div 8665 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-n0 9212 df-z 9289 df-uz 9564 df-q 9656 df-rp 9690 df-seqfrec 10485 df-exp 10560 df-cj 10892 df-re 10893 df-im 10894 df-rsqrt 11048 df-abs 11049 df-dvds 11836 df-prm 12151 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |