ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqnprm GIF version

Theorem sqnprm 12400
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
sqnprm (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ)

Proof of Theorem sqnprm
StepHypRef Expression
1 zre 9375 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21adantr 276 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℝ)
3 absresq 11331 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2))
42, 3syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = (𝐴↑2))
52recnd 8100 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℂ)
65abscld 11434 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℝ)
76recnd 8100 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℂ)
87sqvald 10813 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
94, 8eqtr3d 2239 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) = ((abs‘𝐴) · (abs‘𝐴)))
10 simpr 110 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ ℙ)
119, 10eqeltrrd 2282 . 2 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
12 nn0abscl 11338 . . . . . 6 (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0)
1312adantr 276 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℕ0)
1413nn0zd 9492 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℤ)
15 sq1 10776 . . . . . 6 (1↑2) = 1
16 prmuz2 12395 . . . . . . . . 9 ((𝐴↑2) ∈ ℙ → (𝐴↑2) ∈ (ℤ‘2))
1716adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ (ℤ‘2))
18 eluz2b1 9721 . . . . . . . . 9 ((𝐴↑2) ∈ (ℤ‘2) ↔ ((𝐴↑2) ∈ ℤ ∧ 1 < (𝐴↑2)))
1918simprbi 275 . . . . . . . 8 ((𝐴↑2) ∈ (ℤ‘2) → 1 < (𝐴↑2))
2017, 19syl 14 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (𝐴↑2))
2120, 4breqtrrd 4071 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < ((abs‘𝐴)↑2))
2215, 21eqbrtrid 4078 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1↑2) < ((abs‘𝐴)↑2))
235absge0d 11437 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 0 ≤ (abs‘𝐴))
24 1re 8070 . . . . . . 7 1 ∈ ℝ
25 0le1 8553 . . . . . . 7 0 ≤ 1
26 lt2sq 10756 . . . . . . 7 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
2724, 25, 26mpanl12 436 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
286, 23, 27syl2anc 411 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2)))
2922, 28mpbird 167 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (abs‘𝐴))
30 eluz2b1 9721 . . . 4 ((abs‘𝐴) ∈ (ℤ‘2) ↔ ((abs‘𝐴) ∈ ℤ ∧ 1 < (abs‘𝐴)))
3114, 29, 30sylanbrc 417 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ (ℤ‘2))
32 nprm 12387 . . 3 (((abs‘𝐴) ∈ (ℤ‘2) ∧ (abs‘𝐴) ∈ (ℤ‘2)) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
3331, 31, 32syl2anc 411 . 2 ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ)
3411, 33pm2.65da 662 1 (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5270  (class class class)co 5943  cr 7923  0cc0 7924  1c1 7925   · cmul 7929   < clt 8106  cle 8107  2c2 9086  0cn0 9294  cz 9371  cuz 9647  cexp 10681  abscabs 11250  cprime 12371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-dvds 12041  df-prm 12372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator