Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqnprm | GIF version |
Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
sqnprm | ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9205 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℝ) |
3 | absresq 11031 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴)↑2) = (𝐴↑2)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = (𝐴↑2)) |
5 | 2 | recnd 7937 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 𝐴 ∈ ℂ) |
6 | 5 | abscld 11134 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℝ) |
7 | 6 | recnd 7937 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℂ) |
8 | 7 | sqvald 10595 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
9 | 4, 8 | eqtr3d 2205 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) = ((abs‘𝐴) · (abs‘𝐴))) |
10 | simpr 109 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ ℙ) | |
11 | 9, 10 | eqeltrrd 2248 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) |
12 | nn0abscl 11038 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → (abs‘𝐴) ∈ ℕ0) | |
13 | 12 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℕ0) |
14 | 13 | nn0zd 9321 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ ℤ) |
15 | sq1 10558 | . . . . . 6 ⊢ (1↑2) = 1 | |
16 | prmuz2 12074 | . . . . . . . . 9 ⊢ ((𝐴↑2) ∈ ℙ → (𝐴↑2) ∈ (ℤ≥‘2)) | |
17 | 16 | adantl 275 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (𝐴↑2) ∈ (ℤ≥‘2)) |
18 | eluz2b1 9549 | . . . . . . . . 9 ⊢ ((𝐴↑2) ∈ (ℤ≥‘2) ↔ ((𝐴↑2) ∈ ℤ ∧ 1 < (𝐴↑2))) | |
19 | 18 | simprbi 273 | . . . . . . . 8 ⊢ ((𝐴↑2) ∈ (ℤ≥‘2) → 1 < (𝐴↑2)) |
20 | 17, 19 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (𝐴↑2)) |
21 | 20, 4 | breqtrrd 4015 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < ((abs‘𝐴)↑2)) |
22 | 15, 21 | eqbrtrid 4022 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1↑2) < ((abs‘𝐴)↑2)) |
23 | 5 | absge0d 11137 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 0 ≤ (abs‘𝐴)) |
24 | 1re 7908 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
25 | 0le1 8389 | . . . . . . 7 ⊢ 0 ≤ 1 | |
26 | lt2sq 10538 | . . . . . . 7 ⊢ (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) | |
27 | 24, 25, 26 | mpanl12 434 | . . . . . 6 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) |
28 | 6, 23, 27 | syl2anc 409 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (1 < (abs‘𝐴) ↔ (1↑2) < ((abs‘𝐴)↑2))) |
29 | 22, 28 | mpbird 166 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → 1 < (abs‘𝐴)) |
30 | eluz2b1 9549 | . . . 4 ⊢ ((abs‘𝐴) ∈ (ℤ≥‘2) ↔ ((abs‘𝐴) ∈ ℤ ∧ 1 < (abs‘𝐴))) | |
31 | 14, 29, 30 | sylanbrc 415 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → (abs‘𝐴) ∈ (ℤ≥‘2)) |
32 | nprm 12066 | . . 3 ⊢ (((abs‘𝐴) ∈ (ℤ≥‘2) ∧ (abs‘𝐴) ∈ (ℤ≥‘2)) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) | |
33 | 31, 31, 32 | syl2anc 409 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (𝐴↑2) ∈ ℙ) → ¬ ((abs‘𝐴) · (abs‘𝐴)) ∈ ℙ) |
34 | 11, 33 | pm2.65da 656 | 1 ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 (class class class)co 5851 ℝcr 7762 0cc0 7763 1c1 7764 · cmul 7768 < clt 7943 ≤ cle 7944 2c2 8918 ℕ0cn0 9124 ℤcz 9201 ℤ≥cuz 9476 ↑cexp 10464 abscabs 10950 ℙcprime 12050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 ax-arch 7882 ax-caucvg 7883 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-1o 6393 df-2o 6394 df-er 6510 df-en 6716 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-n0 9125 df-z 9202 df-uz 9477 df-q 9568 df-rp 9600 df-seqfrec 10391 df-exp 10465 df-cj 10795 df-re 10796 df-im 10797 df-rsqrt 10951 df-abs 10952 df-dvds 11739 df-prm 12051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |