Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtri2or2exmid GIF version

Theorem ordtri2or2exmid 4481
 Description: Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
ordtri2or2exmid.1 𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)
Assertion
Ref Expression
ordtri2or2exmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ordtri2or2exmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ordtri2or2exmid.1 . . . 4 𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)
2 ordtri2or2exmidlem 4436 . . . . 5 {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
3 suc0 4328 . . . . . 6 suc ∅ = {∅}
4 0elon 4309 . . . . . . 7 ∅ ∈ On
54onsuci 4427 . . . . . 6 suc ∅ ∈ On
63, 5eqeltrri 2211 . . . . 5 {∅} ∈ On
7 sseq1 3115 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦))
8 sseq2 3116 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑦𝑥𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
97, 8orbi12d 782 . . . . . 6 (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → ((𝑥𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
10 sseq2 3116 . . . . . . 7 (𝑦 = {∅} → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅}))
11 sseq1 3115 . . . . . . 7 (𝑦 = {∅} → (𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
1210, 11orbi12d 782 . . . . . 6 (𝑦 = {∅} → (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})))
139, 12rspc2va 2798 . . . . 5 ((({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
142, 6, 13mpanl12 432 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
151, 14ax-mp 5 . . 3 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
16 elirr 4451 . . . . 5 ¬ {∅} ∈ {∅}
17 simpl 108 . . . . . . 7 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅})
18 simpr 109 . . . . . . . 8 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → 𝜑)
19 p0ex 4107 . . . . . . . . . 10 {∅} ∈ V
2019prid2 3625 . . . . . . . . 9 {∅} ∈ {∅, {∅}}
21 biidd 171 . . . . . . . . . 10 (𝑧 = {∅} → (𝜑𝜑))
2221elrab3 2836 . . . . . . . . 9 ({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
2320, 22ax-mp 5 . . . . . . . 8 ({∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
2418, 23sylibr 133 . . . . . . 7 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
2517, 24sseldd 3093 . . . . . 6 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∧ 𝜑) → {∅} ∈ {∅})
2625ex 114 . . . . 5 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → (𝜑 → {∅} ∈ {∅}))
2716, 26mtoi 653 . . . 4 ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} → ¬ 𝜑)
28 snssg 3651 . . . . . 6 (∅ ∈ On → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))
294, 28ax-mp 5 . . . . 5 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})
30 0ex 4050 . . . . . . . 8 ∅ ∈ V
3130prid1 3624 . . . . . . 7 ∅ ∈ {∅, {∅}}
32 biidd 171 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
3332elrab3 2836 . . . . . . 7 (∅ ∈ {∅, {∅}} → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑))
3431, 33ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)
3534biimpi 119 . . . . 5 (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑)
3629, 35sylbir 134 . . . 4 ({∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑)
3727, 36orim12i 748 . . 3 (({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) → (¬ 𝜑𝜑))
3815, 37ax-mp 5 . 2 𝜑𝜑)
39 orcom 717 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
4038, 39mpbi 144 1 (𝜑 ∨ ¬ 𝜑)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 103   ↔ wb 104   ∨ wo 697   = wceq 1331   ∈ wcel 1480  ∀wral 2414  {crab 2418   ⊆ wss 3066  ∅c0 3358  {csn 3522  {cpr 3523  Oncon0 4280  suc csuc 4282 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-tr 4022  df-iord 4283  df-on 4285  df-suc 4288 This theorem is referenced by:  onintexmid  4482
 Copyright terms: Public domain W3C validator