| Step | Hyp | Ref
| Expression |
| 1 | | ordtri2or2exmid.1 |
. . . 4
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) |
| 2 | | ordtri2or2exmidlem 4562 |
. . . . 5
⊢ {𝑧 ∈ {∅, {∅}}
∣ 𝜑} ∈
On |
| 3 | | suc0 4446 |
. . . . . 6
⊢ suc
∅ = {∅} |
| 4 | | 0elon 4427 |
. . . . . . 7
⊢ ∅
∈ On |
| 5 | 4 | onsuci 4552 |
. . . . . 6
⊢ suc
∅ ∈ On |
| 6 | 3, 5 | eqeltrri 2270 |
. . . . 5
⊢ {∅}
∈ On |
| 7 | | sseq1 3206 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑥 ⊆ 𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦)) |
| 8 | | sseq2 3207 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑})) |
| 9 | 7, 8 | orbi12d 794 |
. . . . . 6
⊢ (𝑥 = {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → ((𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ 𝑦 ∨ 𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}))) |
| 10 | | sseq2 3207 |
. . . . . . 7
⊢ (𝑦 = {∅} → ({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ 𝑦 ↔ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆
{∅})) |
| 11 | | sseq1 3206 |
. . . . . . 7
⊢ (𝑦 = {∅} → (𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}}
∣ 𝜑})) |
| 12 | 10, 11 | orbi12d 794 |
. . . . . 6
⊢ (𝑦 = {∅} → (({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ 𝑦 ∨ 𝑦 ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅}
⊆ {𝑧 ∈ {∅,
{∅}} ∣ 𝜑}))) |
| 13 | 9, 12 | rspc2va 2882 |
. . . . 5
⊢ ((({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ∈ On ∧
{∅} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅}
⊆ {𝑧 ∈ {∅,
{∅}} ∣ 𝜑})) |
| 14 | 2, 6, 13 | mpanl12 436 |
. . . 4
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ({𝑧 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅} ∨ {∅}
⊆ {𝑧 ∈ {∅,
{∅}} ∣ 𝜑})) |
| 15 | 1, 14 | ax-mp 5 |
. . 3
⊢ ({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅}
∨ {∅} ⊆ {𝑧
∈ {∅, {∅}} ∣ 𝜑}) |
| 16 | | elirr 4577 |
. . . . 5
⊢ ¬
{∅} ∈ {∅} |
| 17 | | simpl 109 |
. . . . . . 7
⊢ (({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅}
∧ 𝜑) → {𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆
{∅}) |
| 18 | | simpr 110 |
. . . . . . . 8
⊢ (({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅}
∧ 𝜑) → 𝜑) |
| 19 | | p0ex 4221 |
. . . . . . . . . 10
⊢ {∅}
∈ V |
| 20 | 19 | prid2 3729 |
. . . . . . . . 9
⊢ {∅}
∈ {∅, {∅}} |
| 21 | | biidd 172 |
. . . . . . . . . 10
⊢ (𝑧 = {∅} → (𝜑 ↔ 𝜑)) |
| 22 | 21 | elrab3 2921 |
. . . . . . . . 9
⊢
({∅} ∈ {∅, {∅}} → ({∅} ∈ {𝑧 ∈ {∅, {∅}}
∣ 𝜑} ↔ 𝜑)) |
| 23 | 20, 22 | ax-mp 5 |
. . . . . . . 8
⊢
({∅} ∈ {𝑧
∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑) |
| 24 | 18, 23 | sylibr 134 |
. . . . . . 7
⊢ (({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅}
∧ 𝜑) → {∅}
∈ {𝑧 ∈ {∅,
{∅}} ∣ 𝜑}) |
| 25 | 17, 24 | sseldd 3184 |
. . . . . 6
⊢ (({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅}
∧ 𝜑) → {∅}
∈ {∅}) |
| 26 | 25 | ex 115 |
. . . . 5
⊢ ({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅}
→ (𝜑 → {∅}
∈ {∅})) |
| 27 | 16, 26 | mtoi 665 |
. . . 4
⊢ ({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅}
→ ¬ 𝜑) |
| 28 | | snssg 3756 |
. . . . . 6
⊢ (∅
∈ On → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅, {∅}}
∣ 𝜑})) |
| 29 | 4, 28 | ax-mp 5 |
. . . . 5
⊢ (∅
∈ {𝑧 ∈ {∅,
{∅}} ∣ 𝜑} ↔
{∅} ⊆ {𝑧 ∈
{∅, {∅}} ∣ 𝜑}) |
| 30 | | 0ex 4160 |
. . . . . . . 8
⊢ ∅
∈ V |
| 31 | 30 | prid1 3728 |
. . . . . . 7
⊢ ∅
∈ {∅, {∅}} |
| 32 | | biidd 172 |
. . . . . . . 8
⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) |
| 33 | 32 | elrab3 2921 |
. . . . . . 7
⊢ (∅
∈ {∅, {∅}} → (∅ ∈ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} ↔ 𝜑)) |
| 34 | 31, 33 | ax-mp 5 |
. . . . . 6
⊢ (∅
∈ {𝑧 ∈ {∅,
{∅}} ∣ 𝜑} ↔
𝜑) |
| 35 | 34 | biimpi 120 |
. . . . 5
⊢ (∅
∈ {𝑧 ∈ {∅,
{∅}} ∣ 𝜑} →
𝜑) |
| 36 | 29, 35 | sylbir 135 |
. . . 4
⊢
({∅} ⊆ {𝑧 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑) |
| 37 | 27, 36 | orim12i 760 |
. . 3
⊢ (({𝑧 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅}
∨ {∅} ⊆ {𝑧
∈ {∅, {∅}} ∣ 𝜑}) → (¬ 𝜑 ∨ 𝜑)) |
| 38 | 15, 37 | ax-mp 5 |
. 2
⊢ (¬
𝜑 ∨ 𝜑) |
| 39 | | orcom 729 |
. 2
⊢ ((¬
𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) |
| 40 | 38, 39 | mpbi 145 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |