![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > icccntri | GIF version |
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
icccntri.1 | ⊢ 𝐴 ∈ ℝ |
icccntri.2 | ⊢ 𝐵 ∈ ℝ |
icccntri.3 | ⊢ 𝑅 ∈ ℝ+ |
icccntri.4 | ⊢ (𝐴 / 𝑅) = 𝐶 |
icccntri.5 | ⊢ (𝐵 / 𝑅) = 𝐷 |
Ref | Expression |
---|---|
icccntri | ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icccntri.1 | . . . 4 ⊢ 𝐴 ∈ ℝ | |
2 | icccntri.2 | . . . 4 ⊢ 𝐵 ∈ ℝ | |
3 | iccssre 9973 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 426 | . . 3 ⊢ (𝐴[,]𝐵) ⊆ ℝ |
5 | 4 | sseli 3166 | . 2 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → 𝑋 ∈ ℝ) |
6 | icccntri.3 | . . . 4 ⊢ 𝑅 ∈ ℝ+ | |
7 | icccntri.4 | . . . . . 6 ⊢ (𝐴 / 𝑅) = 𝐶 | |
8 | icccntri.5 | . . . . . 6 ⊢ (𝐵 / 𝑅) = 𝐷 | |
9 | 7, 8 | icccntr 10018 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))) |
10 | 1, 2, 9 | mpanl12 436 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))) |
11 | 6, 10 | mpan2 425 | . . 3 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))) |
12 | 11 | biimpd 144 | . 2 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))) |
13 | 5, 12 | mpcom 36 | 1 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 (class class class)co 5891 ℝcr 7828 / cdiv 8647 ℝ+crp 9671 [,]cicc 9909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-pre-mulext 7947 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4308 df-po 4311 df-iso 4312 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 df-div 8648 df-rp 9672 df-icc 9913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |