| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iexpcyc | GIF version | ||
| Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 10734. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| Ref | Expression |
|---|---|
| iexpcyc | ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zq 9700 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℚ) | |
| 2 | 4z 9356 | . . . . . 6 ⊢ 4 ∈ ℤ | |
| 3 | zq 9700 | . . . . . 6 ⊢ (4 ∈ ℤ → 4 ∈ ℚ) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ 4 ∈ ℚ |
| 5 | 4pos 9087 | . . . . 5 ⊢ 0 < 4 | |
| 6 | modqval 10416 | . . . . 5 ⊢ ((𝐾 ∈ ℚ ∧ 4 ∈ ℚ ∧ 0 < 4) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) | |
| 7 | 4, 5, 6 | mp3an23 1340 | . . . 4 ⊢ (𝐾 ∈ ℚ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) |
| 8 | 1, 7 | syl 14 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) |
| 9 | 8 | oveq2d 5938 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4)))))) |
| 10 | 4nn 9154 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 11 | znq 9698 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℚ) | |
| 12 | 10, 11 | mpan2 425 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℚ) |
| 13 | 12 | flqcld 10367 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ) |
| 14 | zmulcl 9379 | . . . . 5 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) | |
| 15 | 2, 13, 14 | sylancr 414 | . . . 4 ⊢ (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) |
| 16 | ax-icn 7974 | . . . . 5 ⊢ i ∈ ℂ | |
| 17 | iap0 9214 | . . . . 5 ⊢ i # 0 | |
| 18 | expsubap 10679 | . . . . 5 ⊢ (((i ∈ ℂ ∧ i # 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) | |
| 19 | 16, 17, 18 | mpanl12 436 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) |
| 20 | 15, 19 | mpdan 421 | . . 3 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) |
| 21 | expmulzap 10677 | . . . . . . . 8 ⊢ (((i ∈ ℂ ∧ i # 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) | |
| 22 | 16, 17, 21 | mpanl12 436 | . . . . . . 7 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) |
| 23 | 2, 13, 22 | sylancr 414 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) |
| 24 | i4 10734 | . . . . . . . 8 ⊢ (i↑4) = 1 | |
| 25 | 24 | oveq1i 5932 | . . . . . . 7 ⊢ ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4))) |
| 26 | 1exp 10660 | . . . . . . . 8 ⊢ ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) | |
| 27 | 13, 26 | syl 14 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) |
| 28 | 25, 27 | eqtrid 2241 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1) |
| 29 | 23, 28 | eqtrd 2229 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1) |
| 30 | 29 | oveq2d 5938 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1)) |
| 31 | expclzap 10656 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ i # 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ) | |
| 32 | 16, 17, 31 | mp3an12 1338 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ) |
| 33 | 32 | div1d 8807 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾)) |
| 34 | 30, 33 | eqtrd 2229 | . . 3 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) |
| 35 | 20, 34 | eqtrd 2229 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) |
| 36 | 9, 35 | eqtrd 2229 | 1 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 0cc0 7879 1c1 7880 ici 7881 · cmul 7884 < clt 8061 − cmin 8197 # cap 8608 / cdiv 8699 ℕcn 8990 4c4 9043 ℤcz 9326 ℚcq 9693 ⌊cfl 10358 mod cmo 10414 ↑cexp 10630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |