ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iexpcyc GIF version

Theorem iexpcyc 10796
Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 10794. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))

Proof of Theorem iexpcyc
StepHypRef Expression
1 zq 9754 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
2 4z 9409 . . . . . 6 4 ∈ ℤ
3 zq 9754 . . . . . 6 (4 ∈ ℤ → 4 ∈ ℚ)
42, 3ax-mp 5 . . . . 5 4 ∈ ℚ
5 4pos 9140 . . . . 5 0 < 4
6 modqval 10476 . . . . 5 ((𝐾 ∈ ℚ ∧ 4 ∈ ℚ ∧ 0 < 4) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
74, 5, 6mp3an23 1342 . . . 4 (𝐾 ∈ ℚ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
81, 7syl 14 . . 3 (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
98oveq2d 5967 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))))
10 4nn 9207 . . . . . . 7 4 ∈ ℕ
11 znq 9752 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℚ)
1210, 11mpan2 425 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℚ)
1312flqcld 10427 . . . . 5 (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ)
14 zmulcl 9433 . . . . 5 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
152, 13, 14sylancr 414 . . . 4 (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
16 ax-icn 8027 . . . . 5 i ∈ ℂ
17 iap0 9267 . . . . 5 i # 0
18 expsubap 10739 . . . . 5 (((i ∈ ℂ ∧ i # 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
1916, 17, 18mpanl12 436 . . . 4 ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
2015, 19mpdan 421 . . 3 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
21 expmulzap 10737 . . . . . . . 8 (((i ∈ ℂ ∧ i # 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
2216, 17, 21mpanl12 436 . . . . . . 7 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
232, 13, 22sylancr 414 . . . . . 6 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
24 i4 10794 . . . . . . . 8 (i↑4) = 1
2524oveq1i 5961 . . . . . . 7 ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4)))
26 1exp 10720 . . . . . . . 8 ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2713, 26syl 14 . . . . . . 7 (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2825, 27eqtrid 2251 . . . . . 6 (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1)
2923, 28eqtrd 2239 . . . . 5 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1)
3029oveq2d 5967 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1))
31 expclzap 10716 . . . . . 6 ((i ∈ ℂ ∧ i # 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ)
3216, 17, 31mp3an12 1340 . . . . 5 (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ)
3332div1d 8860 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾))
3430, 33eqtrd 2239 . . 3 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
3520, 34eqtrd 2239 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
369, 35eqtrd 2239 1 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177   class class class wbr 4047  cfv 5276  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933  ici 7934   · cmul 7937   < clt 8114  cmin 8250   # cap 8661   / cdiv 8752  cn 9043  4c4 9096  cz 9379  cq 9747  cfl 10418   mod cmo 10474  cexp 10690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator