![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iexpcyc | GIF version |
Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 10285. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iexpcyc | ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zq 9317 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℚ) | |
2 | 4z 8985 | . . . . . 6 ⊢ 4 ∈ ℤ | |
3 | zq 9317 | . . . . . 6 ⊢ (4 ∈ ℤ → 4 ∈ ℚ) | |
4 | 2, 3 | ax-mp 7 | . . . . 5 ⊢ 4 ∈ ℚ |
5 | 4pos 8724 | . . . . 5 ⊢ 0 < 4 | |
6 | modqval 9987 | . . . . 5 ⊢ ((𝐾 ∈ ℚ ∧ 4 ∈ ℚ ∧ 0 < 4) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) | |
7 | 4, 5, 6 | mp3an23 1290 | . . . 4 ⊢ (𝐾 ∈ ℚ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) |
8 | 1, 7 | syl 14 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) |
9 | 8 | oveq2d 5744 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4)))))) |
10 | 4nn 8784 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
11 | znq 9315 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℚ) | |
12 | 10, 11 | mpan2 419 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℚ) |
13 | 12 | flqcld 9940 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ) |
14 | zmulcl 9008 | . . . . 5 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) | |
15 | 2, 13, 14 | sylancr 408 | . . . 4 ⊢ (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) |
16 | ax-icn 7637 | . . . . 5 ⊢ i ∈ ℂ | |
17 | iap0 8844 | . . . . 5 ⊢ i # 0 | |
18 | expsubap 10231 | . . . . 5 ⊢ (((i ∈ ℂ ∧ i # 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) | |
19 | 16, 17, 18 | mpanl12 430 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) |
20 | 15, 19 | mpdan 415 | . . 3 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) |
21 | expmulzap 10229 | . . . . . . . 8 ⊢ (((i ∈ ℂ ∧ i # 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) | |
22 | 16, 17, 21 | mpanl12 430 | . . . . . . 7 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) |
23 | 2, 13, 22 | sylancr 408 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) |
24 | i4 10285 | . . . . . . . 8 ⊢ (i↑4) = 1 | |
25 | 24 | oveq1i 5738 | . . . . . . 7 ⊢ ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4))) |
26 | 1exp 10212 | . . . . . . . 8 ⊢ ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) | |
27 | 13, 26 | syl 14 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) |
28 | 25, 27 | syl5eq 2159 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1) |
29 | 23, 28 | eqtrd 2147 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1) |
30 | 29 | oveq2d 5744 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1)) |
31 | expclzap 10208 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ i # 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ) | |
32 | 16, 17, 31 | mp3an12 1288 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ) |
33 | 32 | div1d 8450 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾)) |
34 | 30, 33 | eqtrd 2147 | . . 3 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) |
35 | 20, 34 | eqtrd 2147 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) |
36 | 9, 35 | eqtrd 2147 | 1 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 class class class wbr 3895 ‘cfv 5081 (class class class)co 5728 ℂcc 7542 0cc0 7544 1c1 7545 ici 7546 · cmul 7549 < clt 7721 − cmin 7853 # cap 8258 / cdiv 8342 ℕcn 8627 4c4 8680 ℤcz 8955 ℚcq 9310 ⌊cfl 9931 mod cmo 9985 ↑cexp 10182 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7633 ax-resscn 7634 ax-1cn 7635 ax-1re 7636 ax-icn 7637 ax-addcl 7638 ax-addrcl 7639 ax-mulcl 7640 ax-mulrcl 7641 ax-addcom 7642 ax-mulcom 7643 ax-addass 7644 ax-mulass 7645 ax-distr 7646 ax-i2m1 7647 ax-0lt1 7648 ax-1rid 7649 ax-0id 7650 ax-rnegex 7651 ax-precex 7652 ax-cnre 7653 ax-pre-ltirr 7654 ax-pre-ltwlin 7655 ax-pre-lttrn 7656 ax-pre-apti 7657 ax-pre-ltadd 7658 ax-pre-mulgt0 7659 ax-pre-mulext 7660 ax-arch 7661 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-pnf 7723 df-mnf 7724 df-xr 7725 df-ltxr 7726 df-le 7727 df-sub 7855 df-neg 7856 df-reap 8252 df-ap 8259 df-div 8343 df-inn 8628 df-2 8686 df-3 8687 df-4 8688 df-n0 8879 df-z 8956 df-uz 9226 df-q 9311 df-rp 9341 df-fl 9933 df-mod 9986 df-seqfrec 10109 df-exp 10183 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |