| Step | Hyp | Ref
| Expression |
| 1 | | ordtri2orexmid.1 |
. . . 4
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑦 ⊆ 𝑥) |
| 2 | | ordtriexmidlem 4555 |
. . . . 5
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ On |
| 3 | | suc0 4446 |
. . . . . 6
⊢ suc
∅ = {∅} |
| 4 | | 0elon 4427 |
. . . . . . 7
⊢ ∅
∈ On |
| 5 | 4 | onsuci 4552 |
. . . . . 6
⊢ suc
∅ ∈ On |
| 6 | 3, 5 | eqeltrri 2270 |
. . . . 5
⊢ {∅}
∈ On |
| 7 | | eleq1 2259 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦)) |
| 8 | | sseq2 3207 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 9 | 7, 8 | orbi12d 794 |
. . . . . 6
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ 𝑦 ∨ 𝑦 ⊆ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ 𝑦 ⊆ {𝑧 ∈ {∅} ∣ 𝜑}))) |
| 10 | | eleq2 2260 |
. . . . . . 7
⊢ (𝑦 = {∅} → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅})) |
| 11 | | sseq1 3206 |
. . . . . . 7
⊢ (𝑦 = {∅} → (𝑦 ⊆ {𝑧 ∈ {∅} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 12 | 10, 11 | orbi12d 794 |
. . . . . 6
⊢ (𝑦 = {∅} → (({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ 𝑦 ⊆ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ⊆
{𝑧 ∈ {∅} ∣
𝜑}))) |
| 13 | 9, 12 | rspc2va 2882 |
. . . . 5
⊢ ((({𝑧 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈
On) ∧ ∀𝑥 ∈
On ∀𝑦 ∈ On
(𝑥 ∈ 𝑦 ∨ 𝑦 ⊆ 𝑥)) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ⊆
{𝑧 ∈ {∅} ∣
𝜑})) |
| 14 | 2, 6, 13 | mpanl12 436 |
. . . 4
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ⊆
{𝑧 ∈ {∅} ∣
𝜑})) |
| 15 | 1, 14 | ax-mp 5 |
. . 3
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅}
⊆ {𝑧 ∈ {∅}
∣ 𝜑}) |
| 16 | | elsni 3640 |
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} = ∅) |
| 17 | | ordtriexmidlem2 4556 |
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
| 18 | 16, 17 | syl 14 |
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} → ¬
𝜑) |
| 19 | | snssg 3756 |
. . . . . 6
⊢ (∅
∈ On → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑})) |
| 20 | 4, 19 | ax-mp 5 |
. . . . 5
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} ↔ {∅}
⊆ {𝑧 ∈ {∅}
∣ 𝜑}) |
| 21 | | 0ex 4160 |
. . . . . . . 8
⊢ ∅
∈ V |
| 22 | 21 | snid 3653 |
. . . . . . 7
⊢ ∅
∈ {∅} |
| 23 | | biidd 172 |
. . . . . . . 8
⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) |
| 24 | 23 | elrab3 2921 |
. . . . . . 7
⊢ (∅
∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
| 25 | 22, 24 | ax-mp 5 |
. . . . . 6
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} ↔ 𝜑) |
| 26 | 25 | biimpi 120 |
. . . . 5
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} → 𝜑) |
| 27 | 20, 26 | sylbir 135 |
. . . 4
⊢
({∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑) |
| 28 | 18, 27 | orim12i 760 |
. . 3
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅}
⊆ {𝑧 ∈ {∅}
∣ 𝜑}) → (¬
𝜑 ∨ 𝜑)) |
| 29 | 15, 28 | ax-mp 5 |
. 2
⊢ (¬
𝜑 ∨ 𝜑) |
| 30 | | orcom 729 |
. 2
⊢ ((¬
𝜑 ∨ 𝜑) ↔ (𝜑 ∨ ¬ 𝜑)) |
| 31 | 29, 30 | mpbi 145 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |