ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtri2orexmid GIF version

Theorem ordtri2orexmid 4559
Description: Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 31-Jul-2019.)
Hypothesis
Ref Expression
ordtri2orexmid.1 𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)
Assertion
Ref Expression
ordtri2orexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ordtri2orexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ordtri2orexmid.1 . . . 4 𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)
2 ordtriexmidlem 4555 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
3 suc0 4446 . . . . . 6 suc ∅ = {∅}
4 0elon 4427 . . . . . . 7 ∅ ∈ On
54onsuci 4552 . . . . . 6 suc ∅ ∈ On
63, 5eqeltrri 2270 . . . . 5 {∅} ∈ On
7 eleq1 2259 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦))
8 sseq2 3207 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦𝑥𝑦 ⊆ {𝑧 ∈ {∅} ∣ 𝜑}))
97, 8orbi12d 794 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦𝑦 ⊆ {𝑧 ∈ {∅} ∣ 𝜑})))
10 eleq2 2260 . . . . . . 7 (𝑦 = {∅} → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅}))
11 sseq1 3206 . . . . . . 7 (𝑦 = {∅} → (𝑦 ⊆ {𝑧 ∈ {∅} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑}))
1210, 11orbi12d 794 . . . . . 6 (𝑦 = {∅} → (({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦𝑦 ⊆ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑})))
139, 12rspc2va 2882 . . . . 5 ((({𝑧 ∈ {∅} ∣ 𝜑} ∈ On ∧ {∅} ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑}))
142, 6, 13mpanl12 436 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑}))
151, 14ax-mp 5 . . 3 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑})
16 elsni 3640 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
17 ordtriexmidlem2 4556 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
1816, 17syl 14 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} → ¬ 𝜑)
19 snssg 3756 . . . . . 6 (∅ ∈ On → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑}))
204, 19ax-mp 5 . . . . 5 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑})
21 0ex 4160 . . . . . . . 8 ∅ ∈ V
2221snid 3653 . . . . . . 7 ∅ ∈ {∅}
23 biidd 172 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
2423elrab3 2921 . . . . . . 7 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2522, 24ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2625biimpi 120 . . . . 5 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2720, 26sylbir 135 . . . 4 ({∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2818, 27orim12i 760 . . 3 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ {∅} ∨ {∅} ⊆ {𝑧 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑𝜑))
2915, 28ax-mp 5 . 2 𝜑𝜑)
30 orcom 729 . 2 ((¬ 𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
3129, 30mpbi 145 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  {crab 2479  wss 3157  c0 3450  {csn 3622  Oncon0 4398  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator