| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9370 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | 1 | sseli 3220 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℂcc 7993 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-int 3923 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: nn0nnaddcl 9396 elnn0nn 9407 difgtsumgt 9512 nn0n0n1ge2 9513 uzaddcl 9777 fzctr 10325 nn0split 10328 elfzoext 10393 zpnn0elfzo1 10409 ubmelm1fzo 10427 subfzo0 10443 modqmuladdnn0 10585 addmodidr 10590 modfzo0difsn 10612 nn0ennn 10650 expadd 10798 expmul 10801 bernneq 10877 bernneq2 10878 faclbnd 10958 faclbnd6 10961 bccmpl 10971 bcn0 10972 bcnn 10974 bcnp1n 10976 bcn2 10981 bcp1m1 10982 bcpasc 10983 bcn2p1 10987 hashfzo0 11040 hashfz0 11042 ccatws1lenp1bg 11163 swrdfv2 11190 swrdspsleq 11194 swrdlsw 11196 pfxmpt 11207 pfxswrd 11233 wrdind 11249 wrd2ind 11250 pfxccatin12lem4 11253 pfxccatin12lem1 11255 pfxccatin12lem2 11258 pfxccatin12 11260 swrdccat3blem 11266 fisum0diag2 11953 hashiun 11984 binom1dif 11993 bcxmas 11995 geolim 12017 efaddlem 12180 efexp 12188 eftlub 12196 demoivreALT 12280 nn0ob 12414 modremain 12435 mulgcdr 12534 nn0seqcvgd 12558 modprmn0modprm0 12774 coprimeprodsq 12775 coprimeprodsq2 12776 pcexp 12827 dvdsprmpweqle 12855 difsqpwdvds 12856 znnen 12964 ennnfonelemp1 12972 mulgneg2 13688 cnfldmulg 14534 nn0subm 14541 rpcxpmul2 15581 0sgmppw 15661 2lgslem1c 15763 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 2lgslem3a1 15770 2lgslem3b1 15771 2lgslem3c1 15772 2lgslem3d1 15773 |
| Copyright terms: Public domain | W3C validator |