| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9320 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | 1 | sseli 3193 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ℂcc 7943 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-int 3892 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: nn0nnaddcl 9346 elnn0nn 9357 difgtsumgt 9462 nn0n0n1ge2 9463 uzaddcl 9727 fzctr 10275 nn0split 10278 elfzoext 10343 zpnn0elfzo1 10359 ubmelm1fzo 10377 subfzo0 10393 modqmuladdnn0 10535 addmodidr 10540 modfzo0difsn 10562 nn0ennn 10600 expadd 10748 expmul 10751 bernneq 10827 bernneq2 10828 faclbnd 10908 faclbnd6 10911 bccmpl 10921 bcn0 10922 bcnn 10924 bcnp1n 10926 bcn2 10931 bcp1m1 10932 bcpasc 10933 bcn2p1 10937 hashfzo0 10990 hashfz0 10992 ccatws1lenp1bg 11112 swrdfv2 11139 swrdspsleq 11143 swrdlsw 11145 pfxmpt 11156 pfxswrd 11182 wrdind 11198 wrd2ind 11199 fisum0diag2 11833 hashiun 11864 binom1dif 11873 bcxmas 11875 geolim 11897 efaddlem 12060 efexp 12068 eftlub 12076 demoivreALT 12160 nn0ob 12294 modremain 12315 mulgcdr 12414 nn0seqcvgd 12438 modprmn0modprm0 12654 coprimeprodsq 12655 coprimeprodsq2 12656 pcexp 12707 dvdsprmpweqle 12735 difsqpwdvds 12736 znnen 12844 ennnfonelemp1 12852 mulgneg2 13567 cnfldmulg 14413 nn0subm 14420 rpcxpmul2 15460 0sgmppw 15540 2lgslem1c 15642 2lgslem3a 15645 2lgslem3b 15646 2lgslem3c 15647 2lgslem3d 15648 2lgslem3a1 15649 2lgslem3b1 15650 2lgslem3c1 15651 2lgslem3d1 15652 |
| Copyright terms: Public domain | W3C validator |