| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9299 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | 1 | sseli 3188 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ℂcc 7922 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-int 3885 df-inn 9036 df-n0 9295 |
| This theorem is referenced by: nn0nnaddcl 9325 elnn0nn 9336 difgtsumgt 9441 nn0n0n1ge2 9442 uzaddcl 9706 fzctr 10254 nn0split 10257 elfzoext 10319 zpnn0elfzo1 10335 ubmelm1fzo 10353 subfzo0 10369 modqmuladdnn0 10511 addmodidr 10516 modfzo0difsn 10538 nn0ennn 10576 expadd 10724 expmul 10727 bernneq 10803 bernneq2 10804 faclbnd 10884 faclbnd6 10887 bccmpl 10897 bcn0 10898 bcnn 10900 bcnp1n 10902 bcn2 10907 bcp1m1 10908 bcpasc 10909 bcn2p1 10913 hashfzo0 10966 hashfz0 10968 ccatws1lenp1bg 11087 fisum0diag2 11729 hashiun 11760 binom1dif 11769 bcxmas 11771 geolim 11793 efaddlem 11956 efexp 11964 eftlub 11972 demoivreALT 12056 nn0ob 12190 modremain 12211 mulgcdr 12310 nn0seqcvgd 12334 modprmn0modprm0 12550 coprimeprodsq 12551 coprimeprodsq2 12552 pcexp 12603 dvdsprmpweqle 12631 difsqpwdvds 12632 znnen 12740 ennnfonelemp1 12748 mulgneg2 13463 cnfldmulg 14309 nn0subm 14316 rpcxpmul2 15356 0sgmppw 15436 2lgslem1c 15538 2lgslem3a 15541 2lgslem3b 15542 2lgslem3c 15543 2lgslem3d 15544 2lgslem3a1 15545 2lgslem3b1 15546 2lgslem3c1 15547 2lgslem3d1 15548 |
| Copyright terms: Public domain | W3C validator |