Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 9152 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | 1 | sseli 3149 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ℂcc 7784 ℕ0cn0 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 ax-rnegex 7895 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-int 3841 df-inn 8891 df-n0 9148 |
This theorem is referenced by: nn0nnaddcl 9178 elnn0nn 9189 difgtsumgt 9293 nn0n0n1ge2 9294 uzaddcl 9557 fzctr 10101 nn0split 10104 zpnn0elfzo1 10176 ubmelm1fzo 10194 subfzo0 10210 modqmuladdnn0 10336 addmodidr 10341 modfzo0difsn 10363 nn0ennn 10401 expadd 10530 expmul 10533 bernneq 10608 bernneq2 10609 faclbnd 10687 faclbnd6 10690 bccmpl 10700 bcn0 10701 bcnn 10703 bcnp1n 10705 bcn2 10710 bcp1m1 10711 bcpasc 10712 bcn2p1 10716 hashfzo0 10769 hashfz0 10771 fisum0diag2 11421 hashiun 11452 binom1dif 11461 bcxmas 11463 geolim 11485 efaddlem 11648 efexp 11656 eftlub 11664 demoivreALT 11747 nn0ob 11878 modremain 11899 mulgcdr 11984 nn0seqcvgd 12006 modprmn0modprm0 12221 coprimeprodsq 12222 coprimeprodsq2 12223 pcexp 12274 dvdsprmpweqle 12301 difsqpwdvds 12302 znnen 12364 ennnfonelemp1 12372 mulgneg2 12875 |
Copyright terms: Public domain | W3C validator |