Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 9140 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | 1 | sseli 3143 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7772 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-int 3832 df-inn 8879 df-n0 9136 |
This theorem is referenced by: nn0nnaddcl 9166 elnn0nn 9177 difgtsumgt 9281 nn0n0n1ge2 9282 uzaddcl 9545 fzctr 10089 nn0split 10092 zpnn0elfzo1 10164 ubmelm1fzo 10182 subfzo0 10198 modqmuladdnn0 10324 addmodidr 10329 modfzo0difsn 10351 nn0ennn 10389 expadd 10518 expmul 10521 bernneq 10596 bernneq2 10597 faclbnd 10675 faclbnd6 10678 bccmpl 10688 bcn0 10689 bcnn 10691 bcnp1n 10693 bcn2 10698 bcp1m1 10699 bcpasc 10700 bcn2p1 10704 hashfzo0 10758 hashfz0 10760 fisum0diag2 11410 hashiun 11441 binom1dif 11450 bcxmas 11452 geolim 11474 efaddlem 11637 efexp 11645 eftlub 11653 demoivreALT 11736 nn0ob 11867 modremain 11888 mulgcdr 11973 nn0seqcvgd 11995 modprmn0modprm0 12210 coprimeprodsq 12211 coprimeprodsq2 12212 pcexp 12263 dvdsprmpweqle 12290 difsqpwdvds 12291 znnen 12353 ennnfonelemp1 12361 |
Copyright terms: Public domain | W3C validator |