| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9273 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7896 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: nn0nnaddcl 9299 elnn0nn 9310 difgtsumgt 9414 nn0n0n1ge2 9415 uzaddcl 9679 fzctr 10227 nn0split 10230 zpnn0elfzo1 10303 ubmelm1fzo 10321 subfzo0 10337 modqmuladdnn0 10479 addmodidr 10484 modfzo0difsn 10506 nn0ennn 10544 expadd 10692 expmul 10695 bernneq 10771 bernneq2 10772 faclbnd 10852 faclbnd6 10855 bccmpl 10865 bcn0 10866 bcnn 10868 bcnp1n 10870 bcn2 10875 bcp1m1 10876 bcpasc 10877 bcn2p1 10881 hashfzo0 10934 hashfz0 10936 fisum0diag2 11631 hashiun 11662 binom1dif 11671 bcxmas 11673 geolim 11695 efaddlem 11858 efexp 11866 eftlub 11874 demoivreALT 11958 nn0ob 12092 modremain 12113 mulgcdr 12212 nn0seqcvgd 12236 modprmn0modprm0 12452 coprimeprodsq 12453 coprimeprodsq2 12454 pcexp 12505 dvdsprmpweqle 12533 difsqpwdvds 12534 znnen 12642 ennnfonelemp1 12650 mulgneg2 13364 cnfldmulg 14210 nn0subm 14217 rpcxpmul2 15257 0sgmppw 15337 2lgslem1c 15439 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 2lgslem3a1 15446 2lgslem3b1 15447 2lgslem3c1 15448 2lgslem3d1 15449 |
| Copyright terms: Public domain | W3C validator |