| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9254 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | 1 | sseli 3179 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7877 ℕ0cn0 9249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-int 3875 df-inn 8991 df-n0 9250 |
| This theorem is referenced by: nn0nnaddcl 9280 elnn0nn 9291 difgtsumgt 9395 nn0n0n1ge2 9396 uzaddcl 9660 fzctr 10208 nn0split 10211 zpnn0elfzo1 10284 ubmelm1fzo 10302 subfzo0 10318 modqmuladdnn0 10460 addmodidr 10465 modfzo0difsn 10487 nn0ennn 10525 expadd 10673 expmul 10676 bernneq 10752 bernneq2 10753 faclbnd 10833 faclbnd6 10836 bccmpl 10846 bcn0 10847 bcnn 10849 bcnp1n 10851 bcn2 10856 bcp1m1 10857 bcpasc 10858 bcn2p1 10862 hashfzo0 10915 hashfz0 10917 fisum0diag2 11612 hashiun 11643 binom1dif 11652 bcxmas 11654 geolim 11676 efaddlem 11839 efexp 11847 eftlub 11855 demoivreALT 11939 nn0ob 12073 modremain 12094 mulgcdr 12185 nn0seqcvgd 12209 modprmn0modprm0 12425 coprimeprodsq 12426 coprimeprodsq2 12427 pcexp 12478 dvdsprmpweqle 12506 difsqpwdvds 12507 znnen 12615 ennnfonelemp1 12623 mulgneg2 13286 cnfldmulg 14132 nn0subm 14139 rpcxpmul2 15149 0sgmppw 15229 2lgslem1c 15331 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 2lgslem3a1 15338 2lgslem3b1 15339 2lgslem3c1 15340 2lgslem3d1 15341 |
| Copyright terms: Public domain | W3C validator |