![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 9248 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | 1 | sseli 3176 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℂcc 7872 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-int 3872 df-inn 8985 df-n0 9244 |
This theorem is referenced by: nn0nnaddcl 9274 elnn0nn 9285 difgtsumgt 9389 nn0n0n1ge2 9390 uzaddcl 9654 fzctr 10202 nn0split 10205 zpnn0elfzo1 10278 ubmelm1fzo 10296 subfzo0 10312 modqmuladdnn0 10442 addmodidr 10447 modfzo0difsn 10469 nn0ennn 10507 expadd 10655 expmul 10658 bernneq 10734 bernneq2 10735 faclbnd 10815 faclbnd6 10818 bccmpl 10828 bcn0 10829 bcnn 10831 bcnp1n 10833 bcn2 10838 bcp1m1 10839 bcpasc 10840 bcn2p1 10844 hashfzo0 10897 hashfz0 10899 fisum0diag2 11593 hashiun 11624 binom1dif 11633 bcxmas 11635 geolim 11657 efaddlem 11820 efexp 11828 eftlub 11836 demoivreALT 11920 nn0ob 12052 modremain 12073 mulgcdr 12158 nn0seqcvgd 12182 modprmn0modprm0 12397 coprimeprodsq 12398 coprimeprodsq2 12399 pcexp 12450 dvdsprmpweqle 12478 difsqpwdvds 12479 znnen 12558 ennnfonelemp1 12566 mulgneg2 13229 cnfldmulg 14075 nn0subm 14082 2lgslem1c 15247 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 2lgslem3a1 15254 2lgslem3b1 15255 2lgslem3c1 15256 2lgslem3d1 15257 |
Copyright terms: Public domain | W3C validator |