Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 9119 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | 1 | sseli 3138 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℂcc 7751 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-int 3825 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nn0nnaddcl 9145 elnn0nn 9156 difgtsumgt 9260 nn0n0n1ge2 9261 uzaddcl 9524 fzctr 10068 nn0split 10071 zpnn0elfzo1 10143 ubmelm1fzo 10161 subfzo0 10177 modqmuladdnn0 10303 addmodidr 10308 modfzo0difsn 10330 nn0ennn 10368 expadd 10497 expmul 10500 bernneq 10575 bernneq2 10576 faclbnd 10654 faclbnd6 10657 bccmpl 10667 bcn0 10668 bcnn 10670 bcnp1n 10672 bcn2 10677 bcp1m1 10678 bcpasc 10679 bcn2p1 10683 hashfzo0 10736 hashfz0 10738 fisum0diag2 11388 hashiun 11419 binom1dif 11428 bcxmas 11430 geolim 11452 efaddlem 11615 efexp 11623 eftlub 11631 demoivreALT 11714 nn0ob 11845 modremain 11866 mulgcdr 11951 nn0seqcvgd 11973 modprmn0modprm0 12188 coprimeprodsq 12189 coprimeprodsq2 12190 pcexp 12241 dvdsprmpweqle 12268 difsqpwdvds 12269 znnen 12331 ennnfonelemp1 12339 |
Copyright terms: Public domain | W3C validator |