| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9282 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | 1 | sseli 3188 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ℂcc 7905 ℕ0cn0 9277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 ax-rnegex 8016 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-int 3885 df-inn 9019 df-n0 9278 |
| This theorem is referenced by: nn0nnaddcl 9308 elnn0nn 9319 difgtsumgt 9424 nn0n0n1ge2 9425 uzaddcl 9689 fzctr 10237 nn0split 10240 elfzoext 10302 zpnn0elfzo1 10318 ubmelm1fzo 10336 subfzo0 10352 modqmuladdnn0 10494 addmodidr 10499 modfzo0difsn 10521 nn0ennn 10559 expadd 10707 expmul 10710 bernneq 10786 bernneq2 10787 faclbnd 10867 faclbnd6 10870 bccmpl 10880 bcn0 10881 bcnn 10883 bcnp1n 10885 bcn2 10890 bcp1m1 10891 bcpasc 10892 bcn2p1 10896 hashfzo0 10949 hashfz0 10951 fisum0diag2 11677 hashiun 11708 binom1dif 11717 bcxmas 11719 geolim 11741 efaddlem 11904 efexp 11912 eftlub 11920 demoivreALT 12004 nn0ob 12138 modremain 12159 mulgcdr 12258 nn0seqcvgd 12282 modprmn0modprm0 12498 coprimeprodsq 12499 coprimeprodsq2 12500 pcexp 12551 dvdsprmpweqle 12579 difsqpwdvds 12580 znnen 12688 ennnfonelemp1 12696 mulgneg2 13410 cnfldmulg 14256 nn0subm 14263 rpcxpmul2 15303 0sgmppw 15383 2lgslem1c 15485 2lgslem3a 15488 2lgslem3b 15489 2lgslem3c 15490 2lgslem3d 15491 2lgslem3a1 15492 2lgslem3b1 15493 2lgslem3c1 15494 2lgslem3d1 15495 |
| Copyright terms: Public domain | W3C validator |