| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0sscn 9271 | . 2 ⊢ ℕ0 ⊆ ℂ | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7894 ℕ0cn0 9266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: nn0nnaddcl 9297 elnn0nn 9308 difgtsumgt 9412 nn0n0n1ge2 9413 uzaddcl 9677 fzctr 10225 nn0split 10228 zpnn0elfzo1 10301 ubmelm1fzo 10319 subfzo0 10335 modqmuladdnn0 10477 addmodidr 10482 modfzo0difsn 10504 nn0ennn 10542 expadd 10690 expmul 10693 bernneq 10769 bernneq2 10770 faclbnd 10850 faclbnd6 10853 bccmpl 10863 bcn0 10864 bcnn 10866 bcnp1n 10868 bcn2 10873 bcp1m1 10874 bcpasc 10875 bcn2p1 10879 hashfzo0 10932 hashfz0 10934 fisum0diag2 11629 hashiun 11660 binom1dif 11669 bcxmas 11671 geolim 11693 efaddlem 11856 efexp 11864 eftlub 11872 demoivreALT 11956 nn0ob 12090 modremain 12111 mulgcdr 12210 nn0seqcvgd 12234 modprmn0modprm0 12450 coprimeprodsq 12451 coprimeprodsq2 12452 pcexp 12503 dvdsprmpweqle 12531 difsqpwdvds 12532 znnen 12640 ennnfonelemp1 12648 mulgneg2 13362 cnfldmulg 14208 nn0subm 14215 rpcxpmul2 15233 0sgmppw 15313 2lgslem1c 15415 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 2lgslem3a1 15422 2lgslem3b1 15423 2lgslem3c1 15424 2lgslem3d1 15425 |
| Copyright terms: Public domain | W3C validator |