![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cn | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0cn | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sscn 8883 | . 2 ⊢ ℕ0 ⊆ ℂ | |
2 | 1 | sseli 3059 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1463 ℂcc 7542 ℕ0cn0 8878 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-cnex 7633 ax-resscn 7634 ax-1re 7636 ax-addrcl 7639 ax-rnegex 7651 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-sn 3499 df-int 3738 df-inn 8628 df-n0 8879 |
This theorem is referenced by: nn0nnaddcl 8909 elnn0nn 8920 nn0n0n1ge2 9022 uzaddcl 9280 fzctr 9800 nn0split 9803 zpnn0elfzo1 9875 ubmelm1fzo 9893 subfzo0 9909 modqmuladdnn0 10031 addmodidr 10036 modfzo0difsn 10058 nn0ennn 10096 expadd 10225 expmul 10228 bernneq 10302 bernneq2 10303 faclbnd 10377 faclbnd6 10380 bccmpl 10390 bcn0 10391 bcnn 10393 bcnp1n 10395 bcn2 10400 bcp1m1 10401 bcpasc 10402 bcn2p1 10406 hashfzo0 10459 hashfz0 10461 fisum0diag2 11105 hashiun 11136 binom1dif 11145 bcxmas 11147 geolim 11169 efaddlem 11228 efexp 11236 eftlub 11244 demoivreALT 11327 nn0ob 11450 modremain 11471 mulgcdr 11549 nn0seqcvgd 11565 znnen 11753 ennnfonelemp1 11761 |
Copyright terms: Public domain | W3C validator |