| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn1m1nn | GIF version | ||
| Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn1m1nn | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 713 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ)) | |
| 2 | 1cnd 8087 | . . 3 ⊢ (𝑥 = 1 → 1 ∈ ℂ) | |
| 3 | 1, 2 | 2thd 175 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ)) |
| 4 | eqeq1 2211 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
| 5 | oveq1 5950 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1)) | |
| 6 | 5 | eleq1d 2273 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ)) |
| 7 | 4, 6 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ))) |
| 8 | eqeq1 2211 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
| 9 | oveq1 5950 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1)) | |
| 10 | 9 | eleq1d 2273 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ)) |
| 11 | 8, 10 | orbi12d 794 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))) |
| 12 | eqeq1 2211 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
| 13 | oveq1 5950 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1)) | |
| 14 | 13 | eleq1d 2273 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ)) |
| 15 | 12, 14 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))) |
| 16 | ax-1cn 8017 | . 2 ⊢ 1 ∈ ℂ | |
| 17 | nncn 9043 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 18 | pncan 8277 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦) | |
| 19 | 17, 16, 18 | sylancl 413 | . . . . 5 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦) |
| 20 | id 19 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
| 21 | 19, 20 | eqeltrd 2281 | . . . 4 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ) |
| 22 | 21 | olcd 735 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)) |
| 23 | 22 | a1d 22 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))) |
| 24 | 3, 7, 11, 15, 16, 23 | nnind 9051 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 1c1 7925 + caddc 7927 − cmin 8242 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-inn 9036 |
| This theorem is referenced by: nn1suc 9054 nnsub 9074 nnm1nn0 9335 nn0ge2m1nn 9354 |
| Copyright terms: Public domain | W3C validator |