![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn1m1nn | GIF version |
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn1m1nn | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 713 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ)) | |
2 | 1cnd 8003 | . . 3 ⊢ (𝑥 = 1 → 1 ∈ ℂ) | |
3 | 1, 2 | 2thd 175 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ)) |
4 | eqeq1 2196 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
5 | oveq1 5903 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1)) | |
6 | 5 | eleq1d 2258 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ)) |
7 | 4, 6 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ))) |
8 | eqeq1 2196 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
9 | oveq1 5903 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1)) | |
10 | 9 | eleq1d 2258 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ)) |
11 | 8, 10 | orbi12d 794 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))) |
12 | eqeq1 2196 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
13 | oveq1 5903 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1)) | |
14 | 13 | eleq1d 2258 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ)) |
15 | 12, 14 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))) |
16 | ax-1cn 7934 | . 2 ⊢ 1 ∈ ℂ | |
17 | nncn 8957 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
18 | pncan 8193 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦) | |
19 | 17, 16, 18 | sylancl 413 | . . . . 5 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦) |
20 | id 19 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
21 | 19, 20 | eqeltrd 2266 | . . . 4 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ) |
22 | 21 | olcd 735 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)) |
23 | 22 | a1d 22 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))) |
24 | 3, 7, 11, 15, 16, 23 | nnind 8965 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2160 (class class class)co 5896 ℂcc 7839 1c1 7842 + caddc 7844 − cmin 8158 ℕcn 8949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-distr 7945 ax-i2m1 7946 ax-0id 7949 ax-rnegex 7950 ax-cnre 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-sub 8160 df-inn 8950 |
This theorem is referenced by: nn1suc 8968 nnsub 8988 nnm1nn0 9247 nn0ge2m1nn 9266 |
Copyright terms: Public domain | W3C validator |