ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1m1nn GIF version

Theorem nn1m1nn 9000
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn1m1nn (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))

Proof of Theorem nn1m1nn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 713 . . 3 (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ))
2 1cnd 8035 . . 3 (𝑥 = 1 → 1 ∈ ℂ)
31, 22thd 175 . 2 (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ))
4 eqeq1 2200 . . 3 (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1))
5 oveq1 5925 . . . 4 (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1))
65eleq1d 2262 . . 3 (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ))
74, 6orbi12d 794 . 2 (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ)))
8 eqeq1 2200 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1))
9 oveq1 5925 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1))
109eleq1d 2262 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
118, 10orbi12d 794 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
12 eqeq1 2200 . . 3 (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1))
13 oveq1 5925 . . . 4 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
1413eleq1d 2262 . . 3 (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ))
1512, 14orbi12d 794 . 2 (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)))
16 ax-1cn 7965 . 2 1 ∈ ℂ
17 nncn 8990 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
18 pncan 8225 . . . . . 6 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
1917, 16, 18sylancl 413 . . . . 5 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦)
20 id 19 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ)
2119, 20eqeltrd 2270 . . . 4 (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ)
2221olcd 735 . . 3 (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))
2322a1d 22 . 2 (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)))
243, 7, 11, 15, 16, 23nnind 8998 1 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870  1c1 7873   + caddc 7875  cmin 8190  cn 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-inn 8983
This theorem is referenced by:  nn1suc  9001  nnsub  9021  nnm1nn0  9281  nn0ge2m1nn  9300
  Copyright terms: Public domain W3C validator