![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn1m1nn | GIF version |
Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn1m1nn | ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 713 | . . 3 ⊢ (𝑥 = 1 → (𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ)) | |
2 | 1cnd 8035 | . . 3 ⊢ (𝑥 = 1 → 1 ∈ ℂ) | |
3 | 1, 2 | 2thd 175 | . 2 ⊢ (𝑥 = 1 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ 1 ∈ ℂ)) |
4 | eqeq1 2200 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 1 ↔ 𝑦 = 1)) | |
5 | oveq1 5925 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 − 1) = (𝑦 − 1)) | |
6 | 5 | eleq1d 2262 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 − 1) ∈ ℕ ↔ (𝑦 − 1) ∈ ℕ)) |
7 | 4, 6 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ))) |
8 | eqeq1 2200 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 = 1 ↔ (𝑦 + 1) = 1)) | |
9 | oveq1 5925 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 − 1) = ((𝑦 + 1) − 1)) | |
10 | 9 | eleq1d 2262 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 − 1) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ)) |
11 | 8, 10 | orbi12d 794 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))) |
12 | eqeq1 2200 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 1 ↔ 𝐴 = 1)) | |
13 | oveq1 5925 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1)) | |
14 | 13 | eleq1d 2262 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 − 1) ∈ ℕ ↔ (𝐴 − 1) ∈ ℕ)) |
15 | 12, 14 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 1 ∨ (𝑥 − 1) ∈ ℕ) ↔ (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))) |
16 | ax-1cn 7965 | . 2 ⊢ 1 ∈ ℂ | |
17 | nncn 8990 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
18 | pncan 8225 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦) | |
19 | 17, 16, 18 | sylancl 413 | . . . . 5 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) = 𝑦) |
20 | id 19 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ) | |
21 | 19, 20 | eqeltrd 2270 | . . . 4 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) − 1) ∈ ℕ) |
22 | 21 | olcd 735 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ)) |
23 | 22 | a1d 22 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 = 1 ∨ (𝑦 − 1) ∈ ℕ) → ((𝑦 + 1) = 1 ∨ ((𝑦 + 1) − 1) ∈ ℕ))) |
24 | 3, 7, 11, 15, 16, 23 | nnind 8998 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 1c1 7873 + caddc 7875 − cmin 8190 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-inn 8983 |
This theorem is referenced by: nn1suc 9001 nnsub 9021 nnm1nn0 9281 nn0ge2m1nn 9300 |
Copyright terms: Public domain | W3C validator |