ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnind GIF version

Theorem nnind 9034
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9038 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Hypotheses
Ref Expression
nnind.1 (𝑥 = 1 → (𝜑𝜓))
nnind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnind.5 𝜓
nnind.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnind (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnind
StepHypRef Expression
1 1nn 9029 . . . . . 6 1 ∈ ℕ
2 nnind.5 . . . . . 6 𝜓
3 nnind.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 2928 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 944 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 2925 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 9030 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 22 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnind.6 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 335 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 2928 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 2928 . . . . . . . 8 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 205 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 36 . . . . . 6 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 2558 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 peano5nni 9021 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
195, 17, 18mp2an 426 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
2019sseli 3188 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
21 nnind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
2221elrab 2928 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
2320, 22sylib 122 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
2423simprd 114 1 (𝐴 ∈ ℕ → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  {crab 2487  wss 3165  (class class class)co 5934  1c1 7908   + caddc 7910  cn 9018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-sep 4161  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-iota 5229  df-fv 5276  df-ov 5937  df-inn 9019
This theorem is referenced by:  nnindALT  9035  nn1m1nn  9036  nnaddcl  9038  nnmulcl  9039  nnge1  9041  nn1gt1  9052  nnsub  9057  zaddcllempos  9391  zaddcllemneg  9393  nneoor  9457  peano5uzti  9463  nn0ind-raph  9472  indstr  9696  exbtwnzlemshrink  10372  exp3vallem  10666  expcllem  10676  expap0  10695  apexp1  10844  seq3coll  10968  resqrexlemover  11240  resqrexlemlo  11243  resqrexlemcalc3  11246  gcdmultiple  12260  rplpwr  12267  prmind2  12361  prmdvdsexp  12389  sqrt2irr  12403  pw2dvdslemn  12406  pcmpt  12585  prmpwdvds  12597  mulgnnass  13411  dvexp  15101  plycolemc  15148  2sqlem10  15520
  Copyright terms: Public domain W3C validator