| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnind | GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 9076 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
| nnind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nnind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nnind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nnind.5 | ⊢ 𝜓 |
| nnind.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nnind | ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9067 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 2 | nnind.5 | . . . . . 6 ⊢ 𝜓 | |
| 3 | nnind.1 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elrab 2933 | . . . . . 6 ⊢ (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓)) |
| 5 | 1, 2, 4 | mpbir2an 945 | . . . . 5 ⊢ 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
| 6 | elrabi 2930 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ) | |
| 7 | peano2nn 9068 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
| 8 | 7 | a1d 22 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)) |
| 9 | nnind.6 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
| 10 | 8, 9 | anim12d 335 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃))) |
| 11 | nnind.2 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 12 | 11 | elrab 2933 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒)) |
| 13 | nnind.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 14 | 13 | elrab 2933 | . . . . . . . 8 ⊢ ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃)) |
| 15 | 10, 12, 14 | 3imtr4g 205 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
| 16 | 6, 15 | mpcom 36 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
| 17 | 16 | rgen 2560 | . . . . 5 ⊢ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
| 18 | peano5nni 9059 | . . . . 5 ⊢ ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}) | |
| 19 | 5, 17, 18 | mp2an 426 | . . . 4 ⊢ ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑} |
| 20 | 19 | sseli 3193 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
| 21 | nnind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 22 | 21 | elrab 2933 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏)) |
| 23 | 20, 22 | sylib 122 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏)) |
| 24 | 23 | simprd 114 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 ⊆ wss 3170 (class class class)co 5957 1c1 7946 + caddc 7948 ℕcn 9056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 |
| This theorem is referenced by: nnindALT 9073 nn1m1nn 9074 nnaddcl 9076 nnmulcl 9077 nnge1 9079 nn1gt1 9090 nnsub 9095 zaddcllempos 9429 zaddcllemneg 9431 nneoor 9495 peano5uzti 9501 nn0ind-raph 9510 indstr 9734 exbtwnzlemshrink 10413 exp3vallem 10707 expcllem 10717 expap0 10736 apexp1 10885 seq3coll 11009 resqrexlemover 11396 resqrexlemlo 11399 resqrexlemcalc3 11402 gcdmultiple 12416 rplpwr 12423 prmind2 12517 prmdvdsexp 12545 sqrt2irr 12559 pw2dvdslemn 12562 pcmpt 12741 prmpwdvds 12753 mulgnnass 13568 dvexp 15258 plycolemc 15305 2sqlem10 15677 |
| Copyright terms: Public domain | W3C validator |