![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnord | GIF version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4642 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | eloni 4406 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Ord word 4393 Oncon0 4394 ωcom 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 |
This theorem is referenced by: nnsucsssuc 6545 nnsucuniel 6548 nntri1 6549 nnsseleq 6554 nntr2 6556 phplem1 6908 phplem2 6909 phplem3 6910 phplem4 6911 phplem4dom 6918 nndomo 6920 dif1en 6935 nnwetri 6972 unsnfi 6975 ctmlemr 7167 nnnninf 7185 nnnninfeq 7187 nnnninfeq2 7188 nninfisol 7192 piord 7371 addnidpig 7396 archnqq 7477 frecfzennn 10497 hashp1i 10881 ennnfonelemk 12557 ennnfonelemg 12560 ennnfonelemhf1o 12570 ennnfonelemhom 12572 ctinfom 12585 nnsf 15495 peano4nninf 15496 nninfsellemeq 15504 |
Copyright terms: Public domain | W3C validator |