| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnord | GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 4658 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 4422 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 Ord word 4409 Oncon0 4410 ωcom 4638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: nnsucsssuc 6578 nnsucuniel 6581 nntri1 6582 nnsseleq 6587 nntr2 6589 phplem1 6949 phplem2 6950 phplem3 6951 phplem4 6952 phplem4dom 6959 nndomo 6961 dif1en 6976 nnwetri 7013 unsnfi 7016 ctmlemr 7210 nnnninf 7228 nnnninfeq 7230 nnnninfeq2 7231 nninfisol 7235 piord 7424 addnidpig 7449 archnqq 7530 frecfzennn 10571 hashp1i 10955 ennnfonelemk 12771 ennnfonelemg 12774 ennnfonelemhf1o 12784 ennnfonelemhom 12786 ctinfom 12799 nnsf 15946 peano4nninf 15947 nninfsellemeq 15955 nnnninfex 15963 |
| Copyright terms: Public domain | W3C validator |