| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnord | GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 4659 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 4423 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 Ord word 4410 Oncon0 4411 ωcom 4639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 |
| This theorem is referenced by: nnsucsssuc 6580 nnsucuniel 6583 nntri1 6584 nnsseleq 6589 nntr2 6591 phplem1 6951 phplem2 6952 phplem3 6953 phplem4 6954 phplem4dom 6961 nndomo 6963 dif1en 6978 nnwetri 7015 unsnfi 7018 ctmlemr 7212 nnnninf 7230 nnnninfeq 7232 nnnninfeq2 7233 nninfisol 7237 piord 7426 addnidpig 7451 archnqq 7532 frecfzennn 10573 hashp1i 10957 ennnfonelemk 12804 ennnfonelemg 12807 ennnfonelemhf1o 12817 ennnfonelemhom 12819 ctinfom 12832 nnsf 15979 peano4nninf 15980 nninfsellemeq 15988 nnnninfex 15996 |
| Copyright terms: Public domain | W3C validator |