Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnord | GIF version |
Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
Ref | Expression |
---|---|
nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4594 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
2 | eloni 4360 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Ord word 4347 Oncon0 4348 ωcom 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 |
This theorem is referenced by: nnsucsssuc 6471 nnsucuniel 6474 nntri1 6475 nnsseleq 6480 nntr2 6482 phplem1 6830 phplem2 6831 phplem3 6832 phplem4 6833 phplem4dom 6840 nndomo 6842 dif1en 6857 nnwetri 6893 unsnfi 6896 ctmlemr 7085 nnnninf 7102 nnnninfeq 7104 nnnninfeq2 7105 nninfisol 7109 piord 7273 addnidpig 7298 archnqq 7379 frecfzennn 10382 hashp1i 10745 ennnfonelemk 12355 ennnfonelemg 12358 ennnfonelemhf1o 12368 ennnfonelemhom 12370 ctinfom 12383 nnsf 14038 peano4nninf 14039 nninfsellemeq 14047 |
Copyright terms: Public domain | W3C validator |