| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnord | GIF version | ||
| Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnord | ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 4647 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | eloni 4411 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ ω → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Ord word 4398 Oncon0 4399 ωcom 4627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: nnsucsssuc 6559 nnsucuniel 6562 nntri1 6563 nnsseleq 6568 nntr2 6570 phplem1 6922 phplem2 6923 phplem3 6924 phplem4 6925 phplem4dom 6932 nndomo 6934 dif1en 6949 nnwetri 6986 unsnfi 6989 ctmlemr 7183 nnnninf 7201 nnnninfeq 7203 nnnninfeq2 7204 nninfisol 7208 piord 7397 addnidpig 7422 archnqq 7503 frecfzennn 10537 hashp1i 10921 ennnfonelemk 12644 ennnfonelemg 12647 ennnfonelemhf1o 12657 ennnfonelemhom 12659 ctinfom 12672 nnsf 15760 peano4nninf 15761 nninfsellemeq 15769 nnnninfex 15777 |
| Copyright terms: Public domain | W3C validator |