ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovres GIF version

Theorem ovres 6085
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.)
Assertion
Ref Expression
ovres ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))

Proof of Theorem ovres
StepHypRef Expression
1 opelxpi 4706 . . 3 ((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
2 fvres 5599 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
31, 2syl 14 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
4 df-ov 5946 . 2 (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩)
5 df-ov 5946 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
63, 4, 53eqtr4g 2262 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cop 3635   × cxp 4672  cres 4676  cfv 5270  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-res 4686  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by:  ovresd  6086  oprssov  6087  ofmresval  6169  elq  9742  mgmsscl  13135  grpissubg  13472  xmetres2  14793  blres  14848  xmetresbl  14854  mscl  14879  xmscl  14880  xmsge0  14881  xmseq0  14882  divcnap  14979  cncfmet  15006  mpodvdsmulf1o  15404
  Copyright terms: Public domain W3C validator