ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovres GIF version

Theorem ovres 6063
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.)
Assertion
Ref Expression
ovres ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))

Proof of Theorem ovres
StepHypRef Expression
1 opelxpi 4695 . . 3 ((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
2 fvres 5582 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
31, 2syl 14 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
4 df-ov 5925 . 2 (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩)
5 df-ov 5925 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
63, 4, 53eqtr4g 2254 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cop 3625   × cxp 4661  cres 4665  cfv 5258  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-res 4675  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  ovresd  6064  oprssov  6065  ofmresval  6147  elq  9696  mgmsscl  13004  grpissubg  13324  xmetres2  14615  blres  14670  xmetresbl  14676  mscl  14701  xmscl  14702  xmsge0  14703  xmseq0  14704  divcnap  14801  cncfmet  14828  mpodvdsmulf1o  15226
  Copyright terms: Public domain W3C validator