ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovres GIF version

Theorem ovres 6144
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.)
Assertion
Ref Expression
ovres ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))

Proof of Theorem ovres
StepHypRef Expression
1 opelxpi 4750 . . 3 ((𝐴𝐶𝐵𝐷) → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
2 fvres 5650 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
31, 2syl 14 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
4 df-ov 6003 . 2 (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘⟨𝐴, 𝐵⟩)
5 df-ov 6003 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
63, 4, 53eqtr4g 2287 1 ((𝐴𝐶𝐵𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cop 3669   × cxp 4716  cres 4720  cfv 5317  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-res 4730  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  ovresd  6145  oprssov  6146  ofmresval  6228  elq  9813  mgmsscl  13389  grpissubg  13726  xmetres2  15047  blres  15102  xmetresbl  15108  mscl  15133  xmscl  15134  xmsge0  15135  xmseq0  15136  divcnap  15233  cncfmet  15260  mpodvdsmulf1o  15658
  Copyright terms: Public domain W3C validator