Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovres | GIF version |
Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006.) |
Ref | Expression |
---|---|
ovres | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4643 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
2 | fvres 5520 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) |
4 | df-ov 5856 | . 2 ⊢ (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = ((𝐹 ↾ (𝐶 × 𝐷))‘〈𝐴, 𝐵〉) | |
5 | df-ov 5856 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
6 | 3, 4, 5 | 3eqtr4g 2228 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴(𝐹 ↾ (𝐶 × 𝐷))𝐵) = (𝐴𝐹𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 〈cop 3586 × cxp 4609 ↾ cres 4613 ‘cfv 5198 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-res 4623 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: ovresd 5993 oprssov 5994 ofmresval 6072 elq 9581 mgmsscl 12615 xmetres2 13173 blres 13228 xmetresbl 13234 mscl 13259 xmscl 13260 xmsge0 13261 xmseq0 13262 divcnap 13349 cncfmet 13373 |
Copyright terms: Public domain | W3C validator |