![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elreldm | GIF version |
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.) |
Ref | Expression |
---|---|
elreldm | ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4504 | . . . . 5 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | ssel 3055 | . . . . 5 ⊢ (𝐴 ⊆ (V × V) → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) | |
3 | 1, 2 | sylbi 120 | . . . 4 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) |
4 | elvv 4559 | . . . 4 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
5 | 3, 4 | syl6ib 160 | . . 3 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉)) |
6 | eleq1 2175 | . . . . . 6 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
7 | vex 2658 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 2658 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opeldm 4700 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
10 | 6, 9 | syl6bi 162 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → 𝑥 ∈ dom 𝐴)) |
11 | inteq 3738 | . . . . . . . 8 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ 𝐵 = ∩ 〈𝑥, 𝑦〉) | |
12 | 11 | inteqd 3740 | . . . . . . 7 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐵 = ∩ ∩ 〈𝑥, 𝑦〉) |
13 | 7, 8 | op1stb 4357 | . . . . . . 7 ⊢ ∩ ∩ 〈𝑥, 𝑦〉 = 𝑥 |
14 | 12, 13 | syl6eq 2161 | . . . . . 6 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐵 = 𝑥) |
15 | 14 | eleq1d 2181 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (∩ ∩ 𝐵 ∈ dom 𝐴 ↔ 𝑥 ∈ dom 𝐴)) |
16 | 10, 15 | sylibrd 168 | . . . 4 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
17 | 16 | exlimivv 1848 | . . 3 ⊢ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
18 | 5, 17 | syli 37 | . 2 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
19 | 18 | imp 123 | 1 ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1312 ∃wex 1449 ∈ wcel 1461 Vcvv 2655 ⊆ wss 3035 〈cop 3494 ∩ cint 3735 × cxp 4495 dom cdm 4497 Rel wrel 4502 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-int 3736 df-br 3894 df-opab 3948 df-xp 4503 df-rel 4504 df-dm 4507 |
This theorem is referenced by: 1stdm 6032 fundmen 6652 |
Copyright terms: Public domain | W3C validator |