Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elreldm | GIF version |
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.) |
Ref | Expression |
---|---|
elreldm | ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4618 | . . . . 5 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | ssel 3141 | . . . . 5 ⊢ (𝐴 ⊆ (V × V) → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) | |
3 | 1, 2 | sylbi 120 | . . . 4 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ (V × V))) |
4 | elvv 4673 | . . . 4 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
5 | 3, 4 | syl6ib 160 | . . 3 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉)) |
6 | eleq1 2233 | . . . . . 6 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) | |
7 | vex 2733 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 2733 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opeldm 4814 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
10 | 6, 9 | syl6bi 162 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → 𝑥 ∈ dom 𝐴)) |
11 | inteq 3834 | . . . . . . . 8 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ 𝐵 = ∩ 〈𝑥, 𝑦〉) | |
12 | 11 | inteqd 3836 | . . . . . . 7 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐵 = ∩ ∩ 〈𝑥, 𝑦〉) |
13 | 7, 8 | op1stb 4463 | . . . . . . 7 ⊢ ∩ ∩ 〈𝑥, 𝑦〉 = 𝑥 |
14 | 12, 13 | eqtrdi 2219 | . . . . . 6 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → ∩ ∩ 𝐵 = 𝑥) |
15 | 14 | eleq1d 2239 | . . . . 5 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (∩ ∩ 𝐵 ∈ dom 𝐴 ↔ 𝑥 ∈ dom 𝐴)) |
16 | 10, 15 | sylibrd 168 | . . . 4 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
17 | 16 | exlimivv 1889 | . . 3 ⊢ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
18 | 5, 17 | syli 37 | . 2 ⊢ (Rel 𝐴 → (𝐵 ∈ 𝐴 → ∩ ∩ 𝐵 ∈ dom 𝐴)) |
19 | 18 | imp 123 | 1 ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵 ∈ dom 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 〈cop 3586 ∩ cint 3831 × cxp 4609 dom cdm 4611 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-int 3832 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-dm 4621 |
This theorem is referenced by: 1stdm 6161 fundmen 6784 |
Copyright terms: Public domain | W3C validator |