| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | GIF version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| dmeqd | ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dmeq 4877 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 dom cdm 4674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-dm 4684 |
| This theorem is referenced by: rneq 4904 dmsnsnsng 5159 elxp4 5169 fndmin 5686 1stvalg 6227 fo1st 6242 f1stres 6244 errn 6641 xpassen 6924 xpdom2 6925 frecuzrdgtclt 10564 shftdm 11075 ennnfonelemg 12716 ennnfonelem1 12720 ennnfonelemhdmp1 12722 ennnfonelemkh 12725 ennnfonelemhf1o 12726 ennnfonelemex 12727 ennnfonelemhom 12728 isstruct2im 12784 isstruct2r 12785 setsvalg 12804 prdsval 13047 igsumvalx 13163 cnprcl2k 14620 psmetdmdm 14738 xmetdmdm 14770 blfvalps 14799 limccl 15073 ellimc3apf 15074 dvfvalap 15095 dvcj 15123 dvexp 15125 dvmptclx 15132 dvmptaddx 15133 dvmptmulx 15134 |
| Copyright terms: Public domain | W3C validator |