| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | GIF version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| dmeqd | ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dmeq 4922 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 dom cdm 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-dm 4728 |
| This theorem is referenced by: rneq 4950 dmsnsnsng 5205 elxp4 5215 f10d 5606 fndmin 5741 1stvalg 6286 fo1st 6301 f1stres 6303 errn 6700 xpassen 6985 xpdom2 6986 frecuzrdgtclt 10638 s1dmg 11153 swrdval 11175 swrd0g 11187 shftdm 11328 ennnfonelemg 12969 ennnfonelem1 12973 ennnfonelemhdmp1 12975 ennnfonelemkh 12978 ennnfonelemhf1o 12979 ennnfonelemex 12980 ennnfonelemhom 12981 isstruct2im 13037 isstruct2r 13038 setsvalg 13057 bassetsnn 13084 prdsval 13301 igsumvalx 13417 cnprcl2k 14874 psmetdmdm 14992 xmetdmdm 15024 blfvalps 15053 limccl 15327 ellimc3apf 15328 dvfvalap 15349 dvcj 15377 dvexp 15379 dvmptclx 15386 dvmptaddx 15387 dvmptmulx 15388 isuhgrm 15865 isushgrm 15866 uhgreq12g 15870 isuhgropm 15875 uhgrun 15880 isupgren 15889 upgrop 15898 isumgren 15899 upgr1edc 15915 upgrun 15918 umgrun 15920 isuspgren 15949 isusgren 15950 isuspgropen 15956 isusgropen 15957 ausgrusgrben 15960 usgrstrrepeen 16023 wksfval 16028 |
| Copyright terms: Public domain | W3C validator |