| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | GIF version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| dmeqd | ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dmeq 4867 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-dm 4674 |
| This theorem is referenced by: rneq 4894 dmsnsnsng 5148 elxp4 5158 fndmin 5672 1stvalg 6209 fo1st 6224 f1stres 6226 errn 6623 xpassen 6898 xpdom2 6899 frecuzrdgtclt 10530 shftdm 11004 ennnfonelemg 12645 ennnfonelem1 12649 ennnfonelemhdmp1 12651 ennnfonelemkh 12654 ennnfonelemhf1o 12655 ennnfonelemex 12656 ennnfonelemhom 12657 isstruct2im 12713 isstruct2r 12714 setsvalg 12733 prdsval 12975 igsumvalx 13091 cnprcl2k 14526 psmetdmdm 14644 xmetdmdm 14676 blfvalps 14705 limccl 14979 ellimc3apf 14980 dvfvalap 15001 dvcj 15029 dvexp 15031 dvmptclx 15038 dvmptaddx 15039 dvmptmulx 15040 |
| Copyright terms: Public domain | W3C validator |