| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | GIF version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| dmeqd | ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | dmeq 4887 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 dom cdm 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-dm 4693 |
| This theorem is referenced by: rneq 4914 dmsnsnsng 5169 elxp4 5179 f10d 5569 fndmin 5700 1stvalg 6241 fo1st 6256 f1stres 6258 errn 6655 xpassen 6940 xpdom2 6941 frecuzrdgtclt 10588 s1dmg 11102 swrdval 11124 swrd0g 11136 shftdm 11208 ennnfonelemg 12849 ennnfonelem1 12853 ennnfonelemhdmp1 12855 ennnfonelemkh 12858 ennnfonelemhf1o 12859 ennnfonelemex 12860 ennnfonelemhom 12861 isstruct2im 12917 isstruct2r 12918 setsvalg 12937 prdsval 13180 igsumvalx 13296 cnprcl2k 14753 psmetdmdm 14871 xmetdmdm 14903 blfvalps 14932 limccl 15206 ellimc3apf 15207 dvfvalap 15228 dvcj 15256 dvexp 15258 dvmptclx 15265 dvmptaddx 15266 dvmptmulx 15267 isuhgrm 15742 isushgrm 15743 uhgreq12g 15747 isuhgropm 15752 uhgrun 15757 isupgren 15766 upgrop 15775 isumgren 15776 upgr1edc 15789 upgrun 15792 umgrun 15794 |
| Copyright terms: Public domain | W3C validator |