Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmeqd | GIF version |
Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
dmeqd | ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | dmeq 4804 | . 2 ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 dom cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-dm 4614 |
This theorem is referenced by: rneq 4831 dmsnsnsng 5081 elxp4 5091 fndmin 5592 1stvalg 6110 fo1st 6125 f1stres 6127 errn 6523 xpassen 6796 xpdom2 6797 frecuzrdgtclt 10356 shftdm 10764 ennnfonelemg 12336 ennnfonelem1 12340 ennnfonelemhdmp1 12342 ennnfonelemkh 12345 ennnfonelemhf1o 12346 ennnfonelemex 12347 ennnfonelemhom 12348 isstruct2im 12404 isstruct2r 12405 setsvalg 12424 cnprcl2k 12846 psmetdmdm 12964 xmetdmdm 12996 blfvalps 13025 limccl 13268 ellimc3apf 13269 dvfvalap 13290 dvcj 13313 dvexp 13315 dvmptclx 13320 dvmptaddx 13321 dvmptmulx 13322 |
Copyright terms: Public domain | W3C validator |