ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelrni GIF version

Theorem relelrni 4774
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
Hypothesis
Ref Expression
releldm.1 Rel 𝑅
Assertion
Ref Expression
relelrni (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)

Proof of Theorem relelrni
StepHypRef Expression
1 releldm.1 . 2 Rel 𝑅
2 relelrn 4770 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
31, 2mpan 420 1 (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480   class class class wbr 3924  ran crn 4535  Rel wrel 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-cnv 4542  df-dm 4544  df-rn 4545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator