| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdvv 2621 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: ovelrn 6072 f1o2ndf1 6286 eroveu 6685 eroprf 6687 genipv 7576 genpelvl 7579 genpelvu 7580 genprndl 7588 genprndu 7589 addlocpr 7603 addnqprlemrl 7624 addnqprlemru 7625 mulnqprlemrl 7640 mulnqprlemru 7641 ltsopr 7663 ltaddpr 7664 ltexprlemfl 7676 ltexprlemrl 7677 ltexprlemfu 7678 ltexprlemru 7679 cauappcvgprlemladdfu 7721 cauappcvgprlemladdfl 7722 caucvgprlemdisj 7741 caucvgprlemladdfu 7744 caucvgprprlemdisj 7769 apreap 8614 apreim 8630 apirr 8632 apsym 8633 apcotr 8634 apadd1 8635 apneg 8638 mulext1 8639 apti 8649 aprcl 8673 qapne 9713 qtri3or 10330 exbtwnzlemex 10339 rebtwn2z 10344 cjap 11071 rexanre 11385 climcn2 11474 summodc 11548 prodmodclem2 11742 prodmodc 11743 eirrap 11943 dvds2lem 11968 bezoutlemnewy 12163 bezoutlembi 12172 dvdsmulgcd 12192 divgcdcoprm0 12269 cncongr1 12271 sqrt2irrap 12348 pcqmul 12472 pcneg 12494 pcadd 12509 4sqlem1 12557 4sqlem2 12558 4sqlem4 12561 mul4sq 12563 4sqlem12 12571 4sqlem13m 12572 4sqlem18 12577 imasaddfnlemg 12957 imasgrp2 13240 imasrng 13512 imasring 13620 dvdsrtr 13657 isnzr2 13740 lss1d 13939 znidom 14213 restbasg 14404 txbas 14494 blin2 14668 xmettxlem 14745 xmettx 14746 addcncntoplem 14797 mulcncf 14844 plyf 14973 plyadd 14987 plymul 14988 plyco 14995 plycj 14997 plycn 14998 plyrecj 14999 dvply2g 15002 logbgcd1irr 15203 logbgcd1irrap 15206 2sqlem5 15360 2sqlem9 15365 |
| Copyright terms: Public domain | W3C validator |