| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdvv 2621 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: ovelrn 6076 f1o2ndf1 6295 eroveu 6694 eroprf 6696 genipv 7593 genpelvl 7596 genpelvu 7597 genprndl 7605 genprndu 7606 addlocpr 7620 addnqprlemrl 7641 addnqprlemru 7642 mulnqprlemrl 7657 mulnqprlemru 7658 ltsopr 7680 ltaddpr 7681 ltexprlemfl 7693 ltexprlemrl 7694 ltexprlemfu 7695 ltexprlemru 7696 cauappcvgprlemladdfu 7738 cauappcvgprlemladdfl 7739 caucvgprlemdisj 7758 caucvgprlemladdfu 7761 caucvgprprlemdisj 7786 apreap 8631 apreim 8647 apirr 8649 apsym 8650 apcotr 8651 apadd1 8652 apneg 8655 mulext1 8656 apti 8666 aprcl 8690 qapne 9730 qtri3or 10347 exbtwnzlemex 10356 rebtwn2z 10361 cjap 11088 rexanre 11402 climcn2 11491 summodc 11565 prodmodclem2 11759 prodmodc 11760 eirrap 11960 dvds2lem 11985 bezoutlemnewy 12188 bezoutlembi 12197 dvdsmulgcd 12217 divgcdcoprm0 12294 cncongr1 12296 sqrt2irrap 12373 pcqmul 12497 pcneg 12519 pcadd 12534 4sqlem1 12582 4sqlem2 12583 4sqlem4 12586 mul4sq 12588 4sqlem12 12596 4sqlem13m 12597 4sqlem18 12602 imasaddfnlemg 13016 imasmnd2 13154 imasgrp2 13316 imasrng 13588 imasring 13696 dvdsrtr 13733 isnzr2 13816 lss1d 14015 znidom 14289 restbasg 14488 txbas 14578 blin2 14752 xmettxlem 14829 xmettx 14830 addcncntoplem 14881 mulcncf 14928 plyf 15057 plyadd 15071 plymul 15072 plyco 15079 plycj 15081 plycn 15082 plyrecj 15083 dvply2g 15086 logbgcd1irr 15287 logbgcd1irrap 15290 2sqlem5 15444 2sqlem9 15449 |
| Copyright terms: Public domain | W3C validator |