| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdvv 2631 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: ovelrn 6105 f1o2ndf1 6324 eroveu 6723 eroprf 6725 genipv 7635 genpelvl 7638 genpelvu 7639 genprndl 7647 genprndu 7648 addlocpr 7662 addnqprlemrl 7683 addnqprlemru 7684 mulnqprlemrl 7699 mulnqprlemru 7700 ltsopr 7722 ltaddpr 7723 ltexprlemfl 7735 ltexprlemrl 7736 ltexprlemfu 7737 ltexprlemru 7738 cauappcvgprlemladdfu 7780 cauappcvgprlemladdfl 7781 caucvgprlemdisj 7800 caucvgprlemladdfu 7803 caucvgprprlemdisj 7828 apreap 8673 apreim 8689 apirr 8691 apsym 8692 apcotr 8693 apadd1 8694 apneg 8697 mulext1 8698 apti 8708 aprcl 8732 qapne 9773 qtri3or 10396 exbtwnzlemex 10405 rebtwn2z 10410 cjap 11267 rexanre 11581 climcn2 11670 summodc 11744 prodmodclem2 11938 prodmodc 11939 eirrap 12139 dvds2lem 12164 bezoutlemnewy 12367 bezoutlembi 12376 dvdsmulgcd 12396 divgcdcoprm0 12473 cncongr1 12475 sqrt2irrap 12552 pcqmul 12676 pcneg 12698 pcadd 12713 4sqlem1 12761 4sqlem2 12762 4sqlem4 12765 mul4sq 12767 4sqlem12 12775 4sqlem13m 12776 4sqlem18 12781 imasaddfnlemg 13196 imasmnd2 13334 imasgrp2 13496 imasrng 13768 imasring 13876 dvdsrtr 13913 isnzr2 13996 lss1d 14195 znidom 14469 restbasg 14690 txbas 14780 blin2 14954 xmettxlem 15031 xmettx 15032 addcncntoplem 15083 mulcncf 15130 plyf 15259 plyadd 15273 plymul 15274 plyco 15281 plycj 15283 plycn 15284 plyrecj 15285 dvply2g 15288 logbgcd1irr 15489 logbgcd1irrap 15492 2sqlem5 15646 2sqlem9 15651 |
| Copyright terms: Public domain | W3C validator |