| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdvv 2621 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: ovelrn 6076 f1o2ndf1 6295 eroveu 6694 eroprf 6696 genipv 7595 genpelvl 7598 genpelvu 7599 genprndl 7607 genprndu 7608 addlocpr 7622 addnqprlemrl 7643 addnqprlemru 7644 mulnqprlemrl 7659 mulnqprlemru 7660 ltsopr 7682 ltaddpr 7683 ltexprlemfl 7695 ltexprlemrl 7696 ltexprlemfu 7697 ltexprlemru 7698 cauappcvgprlemladdfu 7740 cauappcvgprlemladdfl 7741 caucvgprlemdisj 7760 caucvgprlemladdfu 7763 caucvgprprlemdisj 7788 apreap 8633 apreim 8649 apirr 8651 apsym 8652 apcotr 8653 apadd1 8654 apneg 8657 mulext1 8658 apti 8668 aprcl 8692 qapne 9732 qtri3or 10349 exbtwnzlemex 10358 rebtwn2z 10363 cjap 11090 rexanre 11404 climcn2 11493 summodc 11567 prodmodclem2 11761 prodmodc 11762 eirrap 11962 dvds2lem 11987 bezoutlemnewy 12190 bezoutlembi 12199 dvdsmulgcd 12219 divgcdcoprm0 12296 cncongr1 12298 sqrt2irrap 12375 pcqmul 12499 pcneg 12521 pcadd 12536 4sqlem1 12584 4sqlem2 12585 4sqlem4 12588 mul4sq 12590 4sqlem12 12598 4sqlem13m 12599 4sqlem18 12604 imasaddfnlemg 13018 imasmnd2 13156 imasgrp2 13318 imasrng 13590 imasring 13698 dvdsrtr 13735 isnzr2 13818 lss1d 14017 znidom 14291 restbasg 14512 txbas 14602 blin2 14776 xmettxlem 14853 xmettx 14854 addcncntoplem 14905 mulcncf 14952 plyf 15081 plyadd 15095 plymul 15096 plyco 15103 plycj 15105 plycn 15106 plyrecj 15107 dvply2g 15110 logbgcd1irr 15311 logbgcd1irrap 15314 2sqlem5 15468 2sqlem9 15473 |
| Copyright terms: Public domain | W3C validator |