| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdvv 2655 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: ovelrn 6145 f1o2ndf1 6364 eroveu 6763 eroprf 6765 genipv 7684 genpelvl 7687 genpelvu 7688 genprndl 7696 genprndu 7697 addlocpr 7711 addnqprlemrl 7732 addnqprlemru 7733 mulnqprlemrl 7748 mulnqprlemru 7749 ltsopr 7771 ltaddpr 7772 ltexprlemfl 7784 ltexprlemrl 7785 ltexprlemfu 7786 ltexprlemru 7787 cauappcvgprlemladdfu 7829 cauappcvgprlemladdfl 7830 caucvgprlemdisj 7849 caucvgprlemladdfu 7852 caucvgprprlemdisj 7877 apreap 8722 apreim 8738 apirr 8740 apsym 8741 apcotr 8742 apadd1 8743 apneg 8746 mulext1 8747 apti 8757 aprcl 8781 qapne 9822 qtri3or 10447 exbtwnzlemex 10456 rebtwn2z 10461 cjap 11403 rexanre 11717 climcn2 11806 summodc 11880 prodmodclem2 12074 prodmodc 12075 eirrap 12275 dvds2lem 12300 bezoutlemnewy 12503 bezoutlembi 12512 dvdsmulgcd 12532 divgcdcoprm0 12609 cncongr1 12611 sqrt2irrap 12688 pcqmul 12812 pcneg 12834 pcadd 12849 4sqlem1 12897 4sqlem2 12898 4sqlem4 12901 mul4sq 12903 4sqlem12 12911 4sqlem13m 12912 4sqlem18 12917 imasaddfnlemg 13333 imasmnd2 13471 imasgrp2 13633 imasrng 13905 imasring 14013 dvdsrtr 14050 isnzr2 14133 lss1d 14332 znidom 14606 restbasg 14827 txbas 14917 blin2 15091 xmettxlem 15168 xmettx 15169 addcncntoplem 15220 mulcncf 15267 plyf 15396 plyadd 15410 plymul 15411 plyco 15418 plycj 15420 plycn 15421 plyrecj 15422 dvply2g 15425 logbgcd1irr 15626 logbgcd1irrap 15629 2sqlem5 15783 2sqlem9 15788 upgrpredgv 15929 usgredg4 15998 |
| Copyright terms: Public domain | W3C validator |