| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdvv 2655 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: ovelrn 6160 f1o2ndf1 6380 eroveu 6781 eroprf 6783 genipv 7704 genpelvl 7707 genpelvu 7708 genprndl 7716 genprndu 7717 addlocpr 7731 addnqprlemrl 7752 addnqprlemru 7753 mulnqprlemrl 7768 mulnqprlemru 7769 ltsopr 7791 ltaddpr 7792 ltexprlemfl 7804 ltexprlemrl 7805 ltexprlemfu 7806 ltexprlemru 7807 cauappcvgprlemladdfu 7849 cauappcvgprlemladdfl 7850 caucvgprlemdisj 7869 caucvgprlemladdfu 7872 caucvgprprlemdisj 7897 apreap 8742 apreim 8758 apirr 8760 apsym 8761 apcotr 8762 apadd1 8763 apneg 8766 mulext1 8767 apti 8777 aprcl 8801 qapne 9842 qtri3or 10468 exbtwnzlemex 10477 rebtwn2z 10482 cjap 11425 rexanre 11739 climcn2 11828 summodc 11902 prodmodclem2 12096 prodmodc 12097 eirrap 12297 dvds2lem 12322 bezoutlemnewy 12525 bezoutlembi 12534 dvdsmulgcd 12554 divgcdcoprm0 12631 cncongr1 12633 sqrt2irrap 12710 pcqmul 12834 pcneg 12856 pcadd 12871 4sqlem1 12919 4sqlem2 12920 4sqlem4 12923 mul4sq 12925 4sqlem12 12933 4sqlem13m 12934 4sqlem18 12939 imasaddfnlemg 13355 imasmnd2 13493 imasgrp2 13655 imasrng 13927 imasring 14035 dvdsrtr 14073 isnzr2 14156 lss1d 14355 znidom 14629 restbasg 14850 txbas 14940 blin2 15114 xmettxlem 15191 xmettx 15192 addcncntoplem 15243 mulcncf 15290 plyf 15419 plyadd 15433 plymul 15434 plyco 15441 plycj 15443 plycn 15444 plyrecj 15445 dvply2g 15448 logbgcd1irr 15649 logbgcd1irrap 15652 2sqlem5 15806 2sqlem9 15811 upgrpredgv 15952 usgredg4 16021 |
| Copyright terms: Public domain | W3C validator |