Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
3 | 2 | rexlimdvv 2599 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 ∃wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-ral 2458 df-rex 2459 |
This theorem is referenced by: ovelrn 6013 f1o2ndf1 6219 eroveu 6616 eroprf 6618 genipv 7483 genpelvl 7486 genpelvu 7487 genprndl 7495 genprndu 7496 addlocpr 7510 addnqprlemrl 7531 addnqprlemru 7532 mulnqprlemrl 7547 mulnqprlemru 7548 ltsopr 7570 ltaddpr 7571 ltexprlemfl 7583 ltexprlemrl 7584 ltexprlemfu 7585 ltexprlemru 7586 cauappcvgprlemladdfu 7628 cauappcvgprlemladdfl 7629 caucvgprlemdisj 7648 caucvgprlemladdfu 7651 caucvgprprlemdisj 7676 apreap 8518 apreim 8534 apirr 8536 apsym 8537 apcotr 8538 apadd1 8539 apneg 8542 mulext1 8543 apti 8553 aprcl 8577 qapne 9612 qtri3or 10213 exbtwnzlemex 10220 rebtwn2z 10225 cjap 10883 rexanre 11197 climcn2 11285 summodc 11359 prodmodclem2 11553 prodmodc 11554 eirrap 11753 dvds2lem 11778 bezoutlemnewy 11964 bezoutlembi 11973 dvdsmulgcd 11993 divgcdcoprm0 12068 cncongr1 12070 sqrt2irrap 12147 pcqmul 12270 pcneg 12291 pcadd 12306 4sqlem1 12353 4sqlem2 12354 4sqlem4 12357 mul4sq 12359 restbasg 13248 txbas 13338 blin2 13512 xmettxlem 13589 xmettx 13590 addcncntoplem 13631 mulcncf 13671 logbgcd1irr 13965 logbgcd1irrap 13968 2sqlem5 14035 2sqlem9 14040 |
Copyright terms: Public domain | W3C validator |