Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
3 | 2 | rexlimdvv 2590 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: ovelrn 5990 f1o2ndf1 6196 eroveu 6592 eroprf 6594 genipv 7450 genpelvl 7453 genpelvu 7454 genprndl 7462 genprndu 7463 addlocpr 7477 addnqprlemrl 7498 addnqprlemru 7499 mulnqprlemrl 7514 mulnqprlemru 7515 ltsopr 7537 ltaddpr 7538 ltexprlemfl 7550 ltexprlemrl 7551 ltexprlemfu 7552 ltexprlemru 7553 cauappcvgprlemladdfu 7595 cauappcvgprlemladdfl 7596 caucvgprlemdisj 7615 caucvgprlemladdfu 7618 caucvgprprlemdisj 7643 apreap 8485 apreim 8501 apirr 8503 apsym 8504 apcotr 8505 apadd1 8506 apneg 8509 mulext1 8510 apti 8520 aprcl 8544 qapne 9577 qtri3or 10178 exbtwnzlemex 10185 rebtwn2z 10190 cjap 10848 rexanre 11162 climcn2 11250 summodc 11324 prodmodclem2 11518 prodmodc 11519 eirrap 11718 dvds2lem 11743 bezoutlemnewy 11929 bezoutlembi 11938 dvdsmulgcd 11958 divgcdcoprm0 12033 cncongr1 12035 sqrt2irrap 12112 pcqmul 12235 pcneg 12256 pcadd 12271 4sqlem1 12318 4sqlem2 12319 4sqlem4 12322 mul4sq 12324 restbasg 12808 txbas 12898 blin2 13072 xmettxlem 13149 xmettx 13150 addcncntoplem 13191 mulcncf 13231 logbgcd1irr 13525 logbgcd1irrap 13528 2sqlem5 13595 2sqlem9 13600 |
Copyright terms: Public domain | W3C validator |