![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
3 | 2 | rexlimdvv 2618 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: ovelrn 6069 f1o2ndf1 6283 eroveu 6682 eroprf 6684 genipv 7571 genpelvl 7574 genpelvu 7575 genprndl 7583 genprndu 7584 addlocpr 7598 addnqprlemrl 7619 addnqprlemru 7620 mulnqprlemrl 7635 mulnqprlemru 7636 ltsopr 7658 ltaddpr 7659 ltexprlemfl 7671 ltexprlemrl 7672 ltexprlemfu 7673 ltexprlemru 7674 cauappcvgprlemladdfu 7716 cauappcvgprlemladdfl 7717 caucvgprlemdisj 7736 caucvgprlemladdfu 7739 caucvgprprlemdisj 7764 apreap 8608 apreim 8624 apirr 8626 apsym 8627 apcotr 8628 apadd1 8629 apneg 8632 mulext1 8633 apti 8643 aprcl 8667 qapne 9707 qtri3or 10313 exbtwnzlemex 10321 rebtwn2z 10326 cjap 11053 rexanre 11367 climcn2 11455 summodc 11529 prodmodclem2 11723 prodmodc 11724 eirrap 11924 dvds2lem 11949 bezoutlemnewy 12136 bezoutlembi 12145 dvdsmulgcd 12165 divgcdcoprm0 12242 cncongr1 12244 sqrt2irrap 12321 pcqmul 12444 pcneg 12466 pcadd 12481 4sqlem1 12529 4sqlem2 12530 4sqlem4 12533 mul4sq 12535 4sqlem12 12543 4sqlem13m 12544 4sqlem18 12549 imasaddfnlemg 12900 imasgrp2 13183 imasrng 13455 imasring 13563 dvdsrtr 13600 isnzr2 13683 lss1d 13882 znidom 14156 restbasg 14347 txbas 14437 blin2 14611 xmettxlem 14688 xmettx 14689 addcncntoplem 14740 mulcncf 14787 plyf 14916 plyadd 14930 plymul 14931 plyco 14937 plycj 14939 plycn 14940 plyrecj 14941 logbgcd1irr 15140 logbgcd1irrap 15143 2sqlem5 15276 2sqlem9 15281 |
Copyright terms: Public domain | W3C validator |