![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
3 | 2 | rexlimdvv 2530 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1463 ∃wrex 2391 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-17 1489 ax-ial 1497 ax-i5r 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-ral 2395 df-rex 2396 |
This theorem is referenced by: ovelrn 5873 f1o2ndf1 6079 eroveu 6474 eroprf 6476 genipv 7265 genpelvl 7268 genpelvu 7269 genprndl 7277 genprndu 7278 addlocpr 7292 addnqprlemrl 7313 addnqprlemru 7314 mulnqprlemrl 7329 mulnqprlemru 7330 ltsopr 7352 ltaddpr 7353 ltexprlemfl 7365 ltexprlemrl 7366 ltexprlemfu 7367 ltexprlemru 7368 cauappcvgprlemladdfu 7410 cauappcvgprlemladdfl 7411 caucvgprlemdisj 7430 caucvgprlemladdfu 7433 caucvgprprlemdisj 7458 apreap 8267 apreim 8283 apirr 8285 apsym 8286 apcotr 8287 apadd1 8288 apneg 8291 mulext1 8292 apti 8302 qapne 9333 qtri3or 9913 exbtwnzlemex 9920 rebtwn2z 9925 cjap 10571 rexanre 10884 climcn2 10970 summodc 11044 eirrap 11332 dvds2lem 11353 bezoutlemnewy 11530 bezoutlembi 11539 dvdsmulgcd 11559 divgcdcoprm0 11628 cncongr1 11630 sqrt2irrap 11703 restbasg 12180 txbas 12269 blin2 12421 xmettxlem 12498 xmettx 12499 addcncntoplem 12537 mulcncf 12577 |
Copyright terms: Public domain | W3C validator |