Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
3 | 2 | rexlimdvv 2594 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: ovelrn 6001 f1o2ndf1 6207 eroveu 6604 eroprf 6606 genipv 7471 genpelvl 7474 genpelvu 7475 genprndl 7483 genprndu 7484 addlocpr 7498 addnqprlemrl 7519 addnqprlemru 7520 mulnqprlemrl 7535 mulnqprlemru 7536 ltsopr 7558 ltaddpr 7559 ltexprlemfl 7571 ltexprlemrl 7572 ltexprlemfu 7573 ltexprlemru 7574 cauappcvgprlemladdfu 7616 cauappcvgprlemladdfl 7617 caucvgprlemdisj 7636 caucvgprlemladdfu 7639 caucvgprprlemdisj 7664 apreap 8506 apreim 8522 apirr 8524 apsym 8525 apcotr 8526 apadd1 8527 apneg 8530 mulext1 8531 apti 8541 aprcl 8565 qapne 9598 qtri3or 10199 exbtwnzlemex 10206 rebtwn2z 10211 cjap 10870 rexanre 11184 climcn2 11272 summodc 11346 prodmodclem2 11540 prodmodc 11541 eirrap 11740 dvds2lem 11765 bezoutlemnewy 11951 bezoutlembi 11960 dvdsmulgcd 11980 divgcdcoprm0 12055 cncongr1 12057 sqrt2irrap 12134 pcqmul 12257 pcneg 12278 pcadd 12293 4sqlem1 12340 4sqlem2 12341 4sqlem4 12344 mul4sq 12346 restbasg 12962 txbas 13052 blin2 13226 xmettxlem 13303 xmettx 13304 addcncntoplem 13345 mulcncf 13385 logbgcd1irr 13679 logbgcd1irrap 13682 2sqlem5 13749 2sqlem9 13754 |
Copyright terms: Public domain | W3C validator |