![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdvva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒))) |
3 | 2 | rexlimdvv 2618 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: ovelrn 6067 f1o2ndf1 6281 eroveu 6680 eroprf 6682 genipv 7569 genpelvl 7572 genpelvu 7573 genprndl 7581 genprndu 7582 addlocpr 7596 addnqprlemrl 7617 addnqprlemru 7618 mulnqprlemrl 7633 mulnqprlemru 7634 ltsopr 7656 ltaddpr 7657 ltexprlemfl 7669 ltexprlemrl 7670 ltexprlemfu 7671 ltexprlemru 7672 cauappcvgprlemladdfu 7714 cauappcvgprlemladdfl 7715 caucvgprlemdisj 7734 caucvgprlemladdfu 7737 caucvgprprlemdisj 7762 apreap 8606 apreim 8622 apirr 8624 apsym 8625 apcotr 8626 apadd1 8627 apneg 8630 mulext1 8631 apti 8641 aprcl 8665 qapne 9704 qtri3or 10310 exbtwnzlemex 10318 rebtwn2z 10323 cjap 11050 rexanre 11364 climcn2 11452 summodc 11526 prodmodclem2 11720 prodmodc 11721 eirrap 11921 dvds2lem 11946 bezoutlemnewy 12133 bezoutlembi 12142 dvdsmulgcd 12162 divgcdcoprm0 12239 cncongr1 12241 sqrt2irrap 12318 pcqmul 12441 pcneg 12463 pcadd 12478 4sqlem1 12526 4sqlem2 12527 4sqlem4 12530 mul4sq 12532 4sqlem12 12540 4sqlem13m 12541 4sqlem18 12546 imasaddfnlemg 12897 imasgrp2 13180 imasrng 13452 imasring 13560 dvdsrtr 13597 isnzr2 13680 lss1d 13879 znidom 14145 restbasg 14336 txbas 14426 blin2 14600 xmettxlem 14677 xmettx 14678 addcncntoplem 14719 mulcncf 14762 plyf 14883 plyadd 14897 plymul 14898 logbgcd1irr 15099 logbgcd1irrap 15102 2sqlem5 15206 2sqlem9 15211 |
Copyright terms: Public domain | W3C validator |