ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qaddcl GIF version

Theorem qaddcl 9624
Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qaddcl ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)

Proof of Theorem qaddcl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9611 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 elq 9611 . 2 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
3 nnz 9261 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℤ)
4 zmulcl 9295 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑥 · 𝑤) ∈ ℤ)
53, 4sylan2 286 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝑥 · 𝑤) ∈ ℤ)
65ad2ant2rl 511 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑥 · 𝑤) ∈ ℤ)
7 simpl 109 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → 𝑧 ∈ ℤ)
8 nnz 9261 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
98adantl 277 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
10 zmulcl 9295 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑧 · 𝑦) ∈ ℤ)
117, 9, 10syl2anr 290 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑧 · 𝑦) ∈ ℤ)
126, 11zaddcld 9368 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ)
1312adantr 276 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → ((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ)
14 nnmulcl 8929 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 · 𝑤) ∈ ℕ)
1514ad2ant2l 508 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑦 · 𝑤) ∈ ℕ)
1615adantr 276 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝑦 · 𝑤) ∈ ℕ)
17 oveq12 5878 . . . . . . . . 9 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 + 𝐵) = ((𝑥 / 𝑦) + (𝑧 / 𝑤)))
18 zcn 9247 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
19 zcn 9247 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
2018, 19anim12i 338 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
21 nncn 8916 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
22 nnap0 8937 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 # 0)
2321, 22jca 306 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
24 nncn 8916 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
25 nnap0 8937 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ → 𝑤 # 0)
2624, 25jca 306 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
2723, 26anim12i 338 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)))
28 divadddivap 8673 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
2920, 27, 28syl2an 289 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
3029an4s 588 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
3117, 30sylan9eqr 2232 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
32 rspceov 5911 . . . . . . . . 9 ((((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ ∧ (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤))) → ∃𝑣 ∈ ℤ ∃𝑢 ∈ ℕ (𝐴 + 𝐵) = (𝑣 / 𝑢))
33 elq 9611 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ ℚ ↔ ∃𝑣 ∈ ℤ ∃𝑢 ∈ ℕ (𝐴 + 𝐵) = (𝑣 / 𝑢))
3432, 33sylibr 134 . . . . . . . 8 ((((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ ∧ (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3513, 16, 31, 34syl3anc 1238 . . . . . . 7 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3635an4s 588 . . . . . 6 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3736exp43 372 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ))))
3837rexlimivv 2600 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ)))
3938rexlimdvv 2601 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ))
4039imp 124 . 2 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝐴 + 𝐵) ∈ ℚ)
411, 2, 40syl2anb 291 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4000  (class class class)co 5869  cc 7800  0cc0 7802   + caddc 7805   · cmul 7807   # cap 8528   / cdiv 8618  cn 8908  cz 9242  cq 9608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609
This theorem is referenced by:  qsubcl  9627  qrevaddcl  9633  flqbi2  10277  flqaddz  10283  flqdiv  10307  modqcyc  10345  modqadd1  10347  modqltm1p1mod  10362  modaddmodlo  10374  modsumfzodifsn  10382  addmodlteq  10384  pcaddlem  12321  4sqlem5  12363  4sqlem6  12364  4sqlem10  12368  apdifflemf  14450  apdiff  14452
  Copyright terms: Public domain W3C validator