| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 2624 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2618 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: opelxp 4713 f1o2ndf1 6327 xpdom2 6941 distrlem5prl 7719 distrlem5pru 7720 mulrid 8089 cnegex 8270 recexap 8746 creur 9052 creui 9053 cju 9054 elz2 9464 qre 9766 qaddcl 9776 qnegcl 9777 qmulcl 9778 qreccl 9783 elpqb 9791 fundm2domnop0 11012 replim 11245 prodmodc 11964 odd2np1 12259 opoe 12281 omoe 12282 opeo 12283 omeo 12284 qredeu 12494 pythagtriplem1 12663 pcz 12730 4sqlem1 12786 4sqlem2 12787 4sqlem4 12790 mul4sq 12792 txuni2 14803 blssioo 15100 tgioo 15101 elply 15281 2sqlem2 15667 mul2sq 15668 2sqlem7 15673 |
| Copyright terms: Public domain | W3C validator |