| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 2622 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2616 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: opelxp 4703 f1o2ndf1 6304 xpdom2 6908 distrlem5prl 7681 distrlem5pru 7682 mulrid 8051 cnegex 8232 recexap 8708 creur 9014 creui 9015 cju 9016 elz2 9426 qre 9728 qaddcl 9738 qnegcl 9739 qmulcl 9740 qreccl 9745 elpqb 9753 replim 11089 prodmodc 11808 odd2np1 12103 opoe 12125 omoe 12126 opeo 12127 omeo 12128 qredeu 12338 pythagtriplem1 12507 pcz 12574 4sqlem1 12630 4sqlem2 12631 4sqlem4 12634 mul4sq 12636 txuni2 14646 blssioo 14943 tgioo 14944 elply 15124 2sqlem2 15510 mul2sq 15511 2sqlem7 15516 |
| Copyright terms: Public domain | W3C validator |