| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 2614 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2608 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: opelxp 4694 f1o2ndf1 6295 xpdom2 6899 distrlem5prl 7672 distrlem5pru 7673 mulrid 8042 cnegex 8223 recexap 8699 creur 9005 creui 9006 cju 9007 elz2 9416 qre 9718 qaddcl 9728 qnegcl 9729 qmulcl 9730 qreccl 9735 elpqb 9743 replim 11043 prodmodc 11762 odd2np1 12057 opoe 12079 omoe 12080 opeo 12081 omeo 12082 qredeu 12292 pythagtriplem1 12461 pcz 12528 4sqlem1 12584 4sqlem2 12585 4sqlem4 12588 mul4sq 12590 txuni2 14600 blssioo 14897 tgioo 14898 elply 15078 2sqlem2 15464 mul2sq 15465 2sqlem7 15470 |
| Copyright terms: Public domain | W3C validator |