![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 2611 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 2605 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: opelxp 4689 f1o2ndf1 6281 xpdom2 6885 distrlem5prl 7646 distrlem5pru 7647 mulrid 8016 cnegex 8197 recexap 8672 creur 8978 creui 8979 cju 8980 elz2 9388 qre 9690 qaddcl 9700 qnegcl 9701 qmulcl 9702 qreccl 9707 elpqb 9715 replim 11003 prodmodc 11721 odd2np1 12014 opoe 12036 omoe 12037 opeo 12038 omeo 12039 qredeu 12235 pythagtriplem1 12403 pcz 12470 4sqlem1 12526 4sqlem2 12527 4sqlem4 12530 mul4sq 12532 txuni2 14424 blssioo 14713 tgioo 14714 elply 14880 2sqlem2 15202 mul2sq 15203 2sqlem7 15208 |
Copyright terms: Public domain | W3C validator |