| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) | 
| Ref | Expression | 
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | 
| Ref | Expression | 
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 2614 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) | 
| 3 | 2 | rexlimiv 2608 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: opelxp 4693 f1o2ndf1 6286 xpdom2 6890 distrlem5prl 7653 distrlem5pru 7654 mulrid 8023 cnegex 8204 recexap 8680 creur 8986 creui 8987 cju 8988 elz2 9397 qre 9699 qaddcl 9709 qnegcl 9710 qmulcl 9711 qreccl 9716 elpqb 9724 replim 11024 prodmodc 11743 odd2np1 12038 opoe 12060 omoe 12061 opeo 12062 omeo 12063 qredeu 12265 pythagtriplem1 12434 pcz 12501 4sqlem1 12557 4sqlem2 12558 4sqlem4 12561 mul4sq 12563 txuni2 14492 blssioo 14789 tgioo 14790 elply 14970 2sqlem2 15356 mul2sq 15357 2sqlem7 15362 | 
| Copyright terms: Public domain | W3C validator |