| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 2648 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2642 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: opelxp 4748 f1o2ndf1 6372 xpdom2 6986 distrlem5prl 7769 distrlem5pru 7770 mulrid 8139 cnegex 8320 recexap 8796 creur 9102 creui 9103 cju 9104 elz2 9514 qre 9816 qaddcl 9826 qnegcl 9827 qmulcl 9828 qreccl 9833 elpqb 9841 fundm2domnop0 11062 replim 11365 prodmodc 12084 odd2np1 12379 opoe 12401 omoe 12402 opeo 12403 omeo 12404 qredeu 12614 pythagtriplem1 12783 pcz 12850 4sqlem1 12906 4sqlem2 12907 4sqlem4 12910 mul4sq 12912 txuni2 14924 blssioo 15221 tgioo 15222 elply 15402 2sqlem2 15788 mul2sq 15789 2sqlem7 15794 upgredgpr 15941 |
| Copyright terms: Public domain | W3C validator |