| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 2614 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 2608 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: opelxp 4694 f1o2ndf1 6295 xpdom2 6899 distrlem5prl 7670 distrlem5pru 7671 mulrid 8040 cnegex 8221 recexap 8697 creur 9003 creui 9004 cju 9005 elz2 9414 qre 9716 qaddcl 9726 qnegcl 9727 qmulcl 9728 qreccl 9733 elpqb 9741 replim 11041 prodmodc 11760 odd2np1 12055 opoe 12077 omoe 12078 opeo 12079 omeo 12080 qredeu 12290 pythagtriplem1 12459 pcz 12526 4sqlem1 12582 4sqlem2 12583 4sqlem4 12586 mul4sq 12588 txuni2 14576 blssioo 14873 tgioo 14874 elply 15054 2sqlem2 15440 mul2sq 15441 2sqlem7 15446 |
| Copyright terms: Public domain | W3C validator |