Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 2587 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 2581 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: opelxp 4641 f1o2ndf1 6207 xpdom2 6809 distrlem5prl 7548 distrlem5pru 7549 mulid1 7917 cnegex 8097 recexap 8571 creur 8875 creui 8876 cju 8877 elz2 9283 qre 9584 qaddcl 9594 qnegcl 9595 qmulcl 9596 qreccl 9601 elpqb 9608 replim 10823 prodmodc 11541 odd2np1 11832 opoe 11854 omoe 11855 opeo 11856 omeo 11857 qredeu 12051 pythagtriplem1 12219 pcz 12285 4sqlem1 12340 4sqlem2 12341 4sqlem4 12344 mul4sq 12346 txuni2 13050 blssioo 13339 tgioo 13340 2sqlem2 13745 mul2sq 13746 2sqlem7 13751 |
Copyright terms: Public domain | W3C validator |