Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimivv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 2582 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 2576 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∃wrex 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2448 df-rex 2449 |
This theorem is referenced by: opelxp 4633 f1o2ndf1 6192 xpdom2 6793 distrlem5prl 7523 distrlem5pru 7524 mulid1 7892 cnegex 8072 recexap 8546 creur 8850 creui 8851 cju 8852 elz2 9258 qre 9559 qaddcl 9569 qnegcl 9570 qmulcl 9571 qreccl 9576 elpqb 9583 replim 10797 prodmodc 11515 odd2np1 11806 opoe 11828 omoe 11829 opeo 11830 omeo 11831 qredeu 12025 pythagtriplem1 12193 pcz 12259 4sqlem1 12314 4sqlem2 12315 4sqlem4 12318 mul4sq 12320 txuni2 12856 blssioo 13145 tgioo 13146 2sqlem2 13551 mul2sq 13552 2sqlem7 13557 |
Copyright terms: Public domain | W3C validator |