ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimivv GIF version

Theorem rexlimivv 2620
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.)
Hypothesis
Ref Expression
rexlimivv.1 ((𝑥𝐴𝑦𝐵) → (𝜑𝜓))
Assertion
Ref Expression
rexlimivv (∃𝑥𝐴𝑦𝐵 𝜑𝜓)
Distinct variable groups:   𝑥,𝑦,𝜓   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rexlimivv
StepHypRef Expression
1 rexlimivv.1 . . 3 ((𝑥𝐴𝑦𝐵) → (𝜑𝜓))
21rexlimdva 2614 . 2 (𝑥𝐴 → (∃𝑦𝐵 𝜑𝜓))
32rexlimiv 2608 1 (∃𝑥𝐴𝑦𝐵 𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  opelxp  4694  f1o2ndf1  6287  xpdom2  6891  distrlem5prl  7655  distrlem5pru  7656  mulrid  8025  cnegex  8206  recexap  8682  creur  8988  creui  8989  cju  8990  elz2  9399  qre  9701  qaddcl  9711  qnegcl  9712  qmulcl  9713  qreccl  9718  elpqb  9726  replim  11026  prodmodc  11745  odd2np1  12040  opoe  12062  omoe  12063  opeo  12064  omeo  12065  qredeu  12275  pythagtriplem1  12444  pcz  12511  4sqlem1  12567  4sqlem2  12568  4sqlem4  12571  mul4sq  12573  txuni2  14502  blssioo  14799  tgioo  14800  elply  14980  2sqlem2  15366  mul2sq  15367  2sqlem7  15372
  Copyright terms: Public domain W3C validator