| Step | Hyp | Ref
 | Expression | 
| 1 |   | elq 9696 | 
. 2
⊢ (𝐴 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝐴 = (𝑥 / 𝑦)) | 
| 2 |   | elq 9696 | 
. 2
⊢ (𝐵 ∈ ℚ ↔
∃𝑧 ∈ ℤ
∃𝑤 ∈ ℕ
𝐵 = (𝑧 / 𝑤)) | 
| 3 |   | zmulcl 9379 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑥 · 𝑧) ∈ ℤ) | 
| 4 |   | nnmulcl 9011 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 · 𝑤) ∈ ℕ) | 
| 5 | 3, 4 | anim12i 338 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ)) | 
| 6 | 5 | an4s 588 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ)) | 
| 7 | 6 | adantr 276 | 
. . . . . . . 8
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ)) | 
| 8 |   | oveq12 5931 | 
. . . . . . . . 9
⊢ ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) = ((𝑥 / 𝑦) · (𝑧 / 𝑤))) | 
| 9 |   | zcn 9331 | 
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) | 
| 10 |   | zcn 9331 | 
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℂ) | 
| 11 | 9, 10 | anim12i 338 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈
ℂ)) | 
| 12 | 11 | ad2ant2r 509 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑥 ∈ ℂ ∧ 𝑧 ∈
ℂ)) | 
| 13 |   | nncn 8998 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) | 
| 14 |   | nnap0 9019 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | 
| 15 | 13, 14 | jca 306 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℂ ∧ 𝑦 # 0)) | 
| 16 |   | nncn 8998 | 
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℕ → 𝑤 ∈
ℂ) | 
| 17 |   | nnap0 9019 | 
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℕ → 𝑤 # 0) | 
| 18 | 16, 17 | jca 306 | 
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℕ → (𝑤 ∈ ℂ ∧ 𝑤 # 0)) | 
| 19 | 15, 18 | anim12i 338 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) | 
| 20 | 19 | ad2ant2l 508 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) | 
| 21 |   | divmuldivap 8739 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) | 
| 22 | 12, 20, 21 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) | 
| 23 | 8, 22 | sylan9eqr 2251 | 
. . . . . . . 8
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 · 𝐵) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) | 
| 24 |   | rspceov 5964 | 
. . . . . . . . . 10
⊢ (((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ ∧ (𝐴 · 𝐵) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) → ∃𝑣 ∈ ℤ ∃𝑢 ∈ ℕ (𝐴 · 𝐵) = (𝑣 / 𝑢)) | 
| 25 | 24 | 3expa 1205 | 
. . . . . . . . 9
⊢ ((((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ) ∧ (𝐴 · 𝐵) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) → ∃𝑣 ∈ ℤ ∃𝑢 ∈ ℕ (𝐴 · 𝐵) = (𝑣 / 𝑢)) | 
| 26 |   | elq 9696 | 
. . . . . . . . 9
⊢ ((𝐴 · 𝐵) ∈ ℚ ↔ ∃𝑣 ∈ ℤ ∃𝑢 ∈ ℕ (𝐴 · 𝐵) = (𝑣 / 𝑢)) | 
| 27 | 25, 26 | sylibr 134 | 
. . . . . . . 8
⊢ ((((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ) ∧ (𝐴 · 𝐵) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) → (𝐴 · 𝐵) ∈ ℚ) | 
| 28 | 7, 23, 27 | syl2anc 411 | 
. . . . . . 7
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 · 𝐵) ∈ ℚ) | 
| 29 | 28 | an4s 588 | 
. . . . . 6
⊢ ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 · 𝐵) ∈ ℚ) | 
| 30 | 29 | exp43 372 | 
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 · 𝐵) ∈ ℚ)))) | 
| 31 | 30 | rexlimivv 2620 | 
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ 𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 · 𝐵) ∈ ℚ))) | 
| 32 | 31 | rexlimdvv 2621 | 
. . 3
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ 𝐴 = (𝑥 / 𝑦) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 · 𝐵) ∈ ℚ)) | 
| 33 | 32 | imp 124 | 
. 2
⊢
((∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) ∈ ℚ) | 
| 34 | 1, 2, 33 | syl2anb 291 | 
1
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ) |