ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexralbidv GIF version

Theorem rexralbidv 2531
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexralbidv (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rexralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 2505 . 2 (𝜑 → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
32rexbidv 2506 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2483  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-ral 2488  df-rex 2489
This theorem is referenced by:  caucvgpr  7794  caucvgprpr  7824  caucvgsrlemgt1  7907  caucvgsrlemoffres  7912  axcaucvglemres  8011  cvg1nlemres  11267  rexfiuz  11271  resqrexlemgt0  11302  resqrexlemoverl  11303  resqrexlemglsq  11304  resqrexlemsqa  11306  resqrexlemex  11307  cau3lem  11396  caubnd2  11399  climi  11569  2clim  11583  ennnfonelemim  12766  mplelbascoe  14425  lmcvg  14660  lmss  14689  txlm  14722  metcnpi  14958  metcnpi2  14959  elcncf  15016  cncfi  15021  limcimo  15108  cnplimclemr  15112  limccoap  15121
  Copyright terms: Public domain W3C validator