Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexralbidv | GIF version |
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | ralbidv 2470 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 2471 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wral 2448 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: caucvgpr 7644 caucvgprpr 7674 caucvgsrlemgt1 7757 caucvgsrlemoffres 7762 axcaucvglemres 7861 cvg1nlemres 10949 rexfiuz 10953 resqrexlemgt0 10984 resqrexlemoverl 10985 resqrexlemglsq 10986 resqrexlemsqa 10988 resqrexlemex 10989 cau3lem 11078 caubnd2 11081 climi 11250 2clim 11264 ennnfonelemim 12379 lmcvg 13011 lmss 13040 txlm 13073 metcnpi 13309 metcnpi2 13310 elcncf 13354 cncfi 13359 limcimo 13428 cnplimclemr 13432 limccoap 13441 |
Copyright terms: Public domain | W3C validator |