ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexralbidv GIF version

Theorem rexralbidv 2523
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexralbidv (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rexralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 2497 . 2 (𝜑 → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
32rexbidv 2498 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2475  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  caucvgpr  7766  caucvgprpr  7796  caucvgsrlemgt1  7879  caucvgsrlemoffres  7884  axcaucvglemres  7983  cvg1nlemres  11167  rexfiuz  11171  resqrexlemgt0  11202  resqrexlemoverl  11203  resqrexlemglsq  11204  resqrexlemsqa  11206  resqrexlemex  11207  cau3lem  11296  caubnd2  11299  climi  11469  2clim  11483  ennnfonelemim  12666  lmcvg  14537  lmss  14566  txlm  14599  metcnpi  14835  metcnpi2  14836  elcncf  14893  cncfi  14898  limcimo  14985  cnplimclemr  14989  limccoap  14998
  Copyright terms: Public domain W3C validator