| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexralbidv | GIF version | ||
| Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexralbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 2497 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 2498 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2475 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: caucvgpr 7749 caucvgprpr 7779 caucvgsrlemgt1 7862 caucvgsrlemoffres 7867 axcaucvglemres 7966 cvg1nlemres 11150 rexfiuz 11154 resqrexlemgt0 11185 resqrexlemoverl 11186 resqrexlemglsq 11187 resqrexlemsqa 11189 resqrexlemex 11190 cau3lem 11279 caubnd2 11282 climi 11452 2clim 11466 ennnfonelemim 12641 lmcvg 14453 lmss 14482 txlm 14515 metcnpi 14751 metcnpi2 14752 elcncf 14809 cncfi 14814 limcimo 14901 cnplimclemr 14905 limccoap 14914 |
| Copyright terms: Public domain | W3C validator |