ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexralbidv GIF version

Theorem rexralbidv 2532
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexralbidv (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rexralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 2506 . 2 (𝜑 → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
32rexbidv 2507 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2484  wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-ral 2489  df-rex 2490
This theorem is referenced by:  caucvgpr  7795  caucvgprpr  7825  caucvgsrlemgt1  7908  caucvgsrlemoffres  7913  axcaucvglemres  8012  cvg1nlemres  11296  rexfiuz  11300  resqrexlemgt0  11331  resqrexlemoverl  11332  resqrexlemglsq  11333  resqrexlemsqa  11335  resqrexlemex  11336  cau3lem  11425  caubnd2  11428  climi  11598  2clim  11612  ennnfonelemim  12795  mplelbascoe  14454  lmcvg  14689  lmss  14718  txlm  14751  metcnpi  14987  metcnpi2  14988  elcncf  15045  cncfi  15050  limcimo  15137  cnplimclemr  15141  limccoap  15150
  Copyright terms: Public domain W3C validator