ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexralbidv GIF version

Theorem rexralbidv 2496
Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexralbidv (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rexralbidv
StepHypRef Expression
1 2ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21ralbidv 2470 . 2 (𝜑 → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
32rexbidv 2471 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wral 2448  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453  df-rex 2454
This theorem is referenced by:  caucvgpr  7644  caucvgprpr  7674  caucvgsrlemgt1  7757  caucvgsrlemoffres  7762  axcaucvglemres  7861  cvg1nlemres  10949  rexfiuz  10953  resqrexlemgt0  10984  resqrexlemoverl  10985  resqrexlemglsq  10986  resqrexlemsqa  10988  resqrexlemex  10989  cau3lem  11078  caubnd2  11081  climi  11250  2clim  11264  ennnfonelemim  12379  lmcvg  13011  lmss  13040  txlm  13073  metcnpi  13309  metcnpi2  13310  elcncf  13354  cncfi  13359  limcimo  13428  cnplimclemr  13432  limccoap  13441
  Copyright terms: Public domain W3C validator