ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex GIF version

Theorem resqrexlemex 10967
Description: Lemma for resqrex 10968. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemex (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝜑,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem resqrexlemex
Dummy variables 𝑟 𝑛 𝑒 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemcvg 10961 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
5 simprl 521 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝑟 ∈ ℝ)
62adantr 274 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝐴 ∈ ℝ)
73adantr 274 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝐴)
8 simprr 522 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
9 fveq2 5486 . . . . . . . . . . . 12 (𝑘 = 𝑐 → (𝐹𝑘) = (𝐹𝑐))
109breq1d 3992 . . . . . . . . . . 11 (𝑘 = 𝑐 → ((𝐹𝑘) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑒)))
119oveq1d 5857 . . . . . . . . . . . 12 (𝑘 = 𝑐 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑐) + 𝑒))
1211breq2d 3994 . . . . . . . . . . 11 (𝑘 = 𝑐 → (𝑟 < ((𝐹𝑘) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑒)))
1310, 12anbi12d 465 . . . . . . . . . 10 (𝑘 = 𝑐 → (((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1413cbvralv 2692 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1514rexbii 2473 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
16 fveq2 5486 . . . . . . . . . 10 (𝑛 = 𝑏 → (ℤ𝑛) = (ℤ𝑏))
1716raleqdv 2667 . . . . . . . . 9 (𝑛 = 𝑏 → (∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1817cbvrexv 2693 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1915, 18bitri 183 . . . . . . 7 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
2019ralbii 2472 . . . . . 6 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
21 oveq2 5850 . . . . . . . . . 10 (𝑒 = 𝑎 → (𝑟 + 𝑒) = (𝑟 + 𝑎))
2221breq2d 3994 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑐) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑎)))
23 oveq2 5850 . . . . . . . . . 10 (𝑒 = 𝑎 → ((𝐹𝑐) + 𝑒) = ((𝐹𝑐) + 𝑎))
2423breq2d 3994 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑟 < ((𝐹𝑐) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑎)))
2522, 24anbi12d 465 . . . . . . . 8 (𝑒 = 𝑎 → (((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2625rexralbidv 2492 . . . . . . 7 (𝑒 = 𝑎 → (∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2726cbvralv 2692 . . . . . 6 (∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
2820, 27bitri 183 . . . . 5 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
298, 28sylib 121 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
301, 6, 7, 5, 29resqrexlemgt0 10962 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝑟)
311, 6, 7, 5, 8resqrexlemsqa 10966 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → (𝑟↑2) = 𝐴)
32 breq2 3986 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
33 oveq1 5849 . . . . . 6 (𝑥 = 𝑟 → (𝑥↑2) = (𝑟↑2))
3433eqeq1d 2174 . . . . 5 (𝑥 = 𝑟 → ((𝑥↑2) = 𝐴 ↔ (𝑟↑2) = 𝐴))
3532, 34anbi12d 465 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)))
3635rspcev 2830 . . 3 ((𝑟 ∈ ℝ ∧ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
375, 30, 31, 36syl12anc 1226 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
384, 37rexlimddv 2588 1 (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {csn 3576   class class class wbr 3982   × cxp 4602  cfv 5188  (class class class)co 5842  cmpo 5844  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cle 7934   / cdiv 8568  cn 8857  2c2 8908  cuz 9466  +crp 9589  seqcseq 10380  cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  resqrex  10968
  Copyright terms: Public domain W3C validator