ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex GIF version

Theorem resqrexlemex 10989
Description: Lemma for resqrex 10990. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemex (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝜑,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem resqrexlemex
Dummy variables 𝑟 𝑛 𝑒 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemcvg 10983 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
5 simprl 526 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝑟 ∈ ℝ)
62adantr 274 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝐴 ∈ ℝ)
73adantr 274 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝐴)
8 simprr 527 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
9 fveq2 5496 . . . . . . . . . . . 12 (𝑘 = 𝑐 → (𝐹𝑘) = (𝐹𝑐))
109breq1d 3999 . . . . . . . . . . 11 (𝑘 = 𝑐 → ((𝐹𝑘) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑒)))
119oveq1d 5868 . . . . . . . . . . . 12 (𝑘 = 𝑐 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑐) + 𝑒))
1211breq2d 4001 . . . . . . . . . . 11 (𝑘 = 𝑐 → (𝑟 < ((𝐹𝑘) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑒)))
1310, 12anbi12d 470 . . . . . . . . . 10 (𝑘 = 𝑐 → (((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1413cbvralv 2696 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1514rexbii 2477 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
16 fveq2 5496 . . . . . . . . . 10 (𝑛 = 𝑏 → (ℤ𝑛) = (ℤ𝑏))
1716raleqdv 2671 . . . . . . . . 9 (𝑛 = 𝑏 → (∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1817cbvrexv 2697 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1915, 18bitri 183 . . . . . . 7 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
2019ralbii 2476 . . . . . 6 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
21 oveq2 5861 . . . . . . . . . 10 (𝑒 = 𝑎 → (𝑟 + 𝑒) = (𝑟 + 𝑎))
2221breq2d 4001 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑐) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑎)))
23 oveq2 5861 . . . . . . . . . 10 (𝑒 = 𝑎 → ((𝐹𝑐) + 𝑒) = ((𝐹𝑐) + 𝑎))
2423breq2d 4001 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑟 < ((𝐹𝑐) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑎)))
2522, 24anbi12d 470 . . . . . . . 8 (𝑒 = 𝑎 → (((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2625rexralbidv 2496 . . . . . . 7 (𝑒 = 𝑎 → (∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2726cbvralv 2696 . . . . . 6 (∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
2820, 27bitri 183 . . . . 5 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
298, 28sylib 121 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
301, 6, 7, 5, 29resqrexlemgt0 10984 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝑟)
311, 6, 7, 5, 8resqrexlemsqa 10988 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → (𝑟↑2) = 𝐴)
32 breq2 3993 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
33 oveq1 5860 . . . . . 6 (𝑥 = 𝑟 → (𝑥↑2) = (𝑟↑2))
3433eqeq1d 2179 . . . . 5 (𝑥 = 𝑟 → ((𝑥↑2) = 𝐴 ↔ (𝑟↑2) = 𝐴))
3532, 34anbi12d 470 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)))
3635rspcev 2834 . . 3 ((𝑟 ∈ ℝ ∧ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
375, 30, 31, 36syl12anc 1231 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
384, 37rexlimddv 2592 1 (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {csn 3583   class class class wbr 3989   × cxp 4609  cfv 5198  (class class class)co 5853  cmpo 5855  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   < clt 7954  cle 7955   / cdiv 8589  cn 8878  2c2 8929  cuz 9487  +crp 9610  seqcseq 10401  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrex  10990
  Copyright terms: Public domain W3C validator