ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex GIF version

Theorem resqrexlemex 11065
Description: Lemma for resqrex 11066. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemex (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝜑,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem resqrexlemex
Dummy variables 𝑟 𝑛 𝑒 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemcvg 11059 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
5 simprl 529 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝑟 ∈ ℝ)
62adantr 276 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝐴 ∈ ℝ)
73adantr 276 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝐴)
8 simprr 531 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
9 fveq2 5534 . . . . . . . . . . . 12 (𝑘 = 𝑐 → (𝐹𝑘) = (𝐹𝑐))
109breq1d 4028 . . . . . . . . . . 11 (𝑘 = 𝑐 → ((𝐹𝑘) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑒)))
119oveq1d 5910 . . . . . . . . . . . 12 (𝑘 = 𝑐 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑐) + 𝑒))
1211breq2d 4030 . . . . . . . . . . 11 (𝑘 = 𝑐 → (𝑟 < ((𝐹𝑘) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑒)))
1310, 12anbi12d 473 . . . . . . . . . 10 (𝑘 = 𝑐 → (((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1413cbvralv 2718 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1514rexbii 2497 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
16 fveq2 5534 . . . . . . . . . 10 (𝑛 = 𝑏 → (ℤ𝑛) = (ℤ𝑏))
1716raleqdv 2692 . . . . . . . . 9 (𝑛 = 𝑏 → (∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1817cbvrexv 2719 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1915, 18bitri 184 . . . . . . 7 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
2019ralbii 2496 . . . . . 6 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
21 oveq2 5903 . . . . . . . . . 10 (𝑒 = 𝑎 → (𝑟 + 𝑒) = (𝑟 + 𝑎))
2221breq2d 4030 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑐) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑎)))
23 oveq2 5903 . . . . . . . . . 10 (𝑒 = 𝑎 → ((𝐹𝑐) + 𝑒) = ((𝐹𝑐) + 𝑎))
2423breq2d 4030 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑟 < ((𝐹𝑐) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑎)))
2522, 24anbi12d 473 . . . . . . . 8 (𝑒 = 𝑎 → (((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2625rexralbidv 2516 . . . . . . 7 (𝑒 = 𝑎 → (∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2726cbvralv 2718 . . . . . 6 (∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
2820, 27bitri 184 . . . . 5 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
298, 28sylib 122 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
301, 6, 7, 5, 29resqrexlemgt0 11060 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝑟)
311, 6, 7, 5, 8resqrexlemsqa 11064 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → (𝑟↑2) = 𝐴)
32 breq2 4022 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
33 oveq1 5902 . . . . . 6 (𝑥 = 𝑟 → (𝑥↑2) = (𝑟↑2))
3433eqeq1d 2198 . . . . 5 (𝑥 = 𝑟 → ((𝑥↑2) = 𝐴 ↔ (𝑟↑2) = 𝐴))
3532, 34anbi12d 473 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)))
3635rspcev 2856 . . 3 ((𝑟 ∈ ℝ ∧ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
375, 30, 31, 36syl12anc 1247 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
384, 37rexlimddv 2612 1 (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wral 2468  wrex 2469  {csn 3607   class class class wbr 4018   × cxp 4642  cfv 5235  (class class class)co 5895  cmpo 5897  cr 7839  0cc0 7840  1c1 7841   + caddc 7843   < clt 8021  cle 8022   / cdiv 8658  cn 8948  2c2 8999  cuz 9557  +crp 9682  seqcseq 10475  cexp 10549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-rp 9683  df-seqfrec 10476  df-exp 10550
This theorem is referenced by:  resqrex  11066
  Copyright terms: Public domain W3C validator