Step | Hyp | Ref
| Expression |
1 | | resqrexlemex.seq |
. . 3
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
2 | | resqrexlemex.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | | resqrexlemex.agt0 |
. . 3
⊢ (𝜑 → 0 ≤ 𝐴) |
4 | 1, 2, 3 | resqrexlemcvg 10983 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒))) |
5 | | simprl 526 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+
∃𝑛 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)))) → 𝑟 ∈ ℝ) |
6 | 2 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+
∃𝑛 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)))) → 𝐴 ∈ ℝ) |
7 | 3 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+
∃𝑛 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)))) → 0 ≤ 𝐴) |
8 | | simprr 527 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+
∃𝑛 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)))) → ∀𝑒 ∈ ℝ+ ∃𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒))) |
9 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑐 → (𝐹‘𝑘) = (𝐹‘𝑐)) |
10 | 9 | breq1d 3999 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑐 → ((𝐹‘𝑘) < (𝑟 + 𝑒) ↔ (𝐹‘𝑐) < (𝑟 + 𝑒))) |
11 | 9 | oveq1d 5868 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑐 → ((𝐹‘𝑘) + 𝑒) = ((𝐹‘𝑐) + 𝑒)) |
12 | 11 | breq2d 4001 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑐 → (𝑟 < ((𝐹‘𝑘) + 𝑒) ↔ 𝑟 < ((𝐹‘𝑐) + 𝑒))) |
13 | 10, 12 | anbi12d 470 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑐 → (((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)) ↔ ((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒)))) |
14 | 13 | cbvralv 2696 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ≥‘𝑛)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒))) |
15 | 14 | rexbii 2477 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)) ↔ ∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ≥‘𝑛)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒))) |
16 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑏 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑏)) |
17 | 16 | raleqdv 2671 |
. . . . . . . . 9
⊢ (𝑛 = 𝑏 → (∀𝑐 ∈ (ℤ≥‘𝑛)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒)))) |
18 | 17 | cbvrexv 2697 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ ∀𝑐 ∈
(ℤ≥‘𝑛)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒))) |
19 | 15, 18 | bitri 183 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒))) |
20 | 19 | ralbii 2476 |
. . . . . 6
⊢
(∀𝑒 ∈
ℝ+ ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+ ∃𝑏 ∈ ℕ ∀𝑐 ∈
(ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒))) |
21 | | oveq2 5861 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑎 → (𝑟 + 𝑒) = (𝑟 + 𝑎)) |
22 | 21 | breq2d 4001 |
. . . . . . . . 9
⊢ (𝑒 = 𝑎 → ((𝐹‘𝑐) < (𝑟 + 𝑒) ↔ (𝐹‘𝑐) < (𝑟 + 𝑎))) |
23 | | oveq2 5861 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑎 → ((𝐹‘𝑐) + 𝑒) = ((𝐹‘𝑐) + 𝑎)) |
24 | 23 | breq2d 4001 |
. . . . . . . . 9
⊢ (𝑒 = 𝑎 → (𝑟 < ((𝐹‘𝑐) + 𝑒) ↔ 𝑟 < ((𝐹‘𝑐) + 𝑎))) |
25 | 22, 24 | anbi12d 470 |
. . . . . . . 8
⊢ (𝑒 = 𝑎 → (((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒)) ↔ ((𝐹‘𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑎)))) |
26 | 25 | rexralbidv 2496 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → (∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑎)))) |
27 | 26 | cbvralv 2696 |
. . . . . 6
⊢
(∀𝑒 ∈
ℝ+ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℕ ∀𝑐 ∈
(ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑎))) |
28 | 20, 27 | bitri 183 |
. . . . 5
⊢
(∀𝑒 ∈
ℝ+ ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℕ ∀𝑐 ∈
(ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑎))) |
29 | 8, 28 | sylib 121 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+
∃𝑛 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)))) → ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℕ ∀𝑐 ∈
(ℤ≥‘𝑏)((𝐹‘𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹‘𝑐) + 𝑎))) |
30 | 1, 6, 7, 5, 29 | resqrexlemgt0 10984 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+
∃𝑛 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)))) → 0 ≤ 𝑟) |
31 | 1, 6, 7, 5, 8 | resqrexlemsqa 10988 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+
∃𝑛 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)))) → (𝑟↑2) = 𝐴) |
32 | | breq2 3993 |
. . . . 5
⊢ (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟)) |
33 | | oveq1 5860 |
. . . . . 6
⊢ (𝑥 = 𝑟 → (𝑥↑2) = (𝑟↑2)) |
34 | 33 | eqeq1d 2179 |
. . . . 5
⊢ (𝑥 = 𝑟 → ((𝑥↑2) = 𝐴 ↔ (𝑟↑2) = 𝐴)) |
35 | 32, 34 | anbi12d 470 |
. . . 4
⊢ (𝑥 = 𝑟 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴))) |
36 | 35 | rspcev 2834 |
. . 3
⊢ ((𝑟 ∈ ℝ ∧ (0 ≤
𝑟 ∧ (𝑟↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) |
37 | 5, 30, 31, 36 | syl12anc 1231 |
. 2
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+
∃𝑛 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹‘𝑘) + 𝑒)))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) |
38 | 4, 37 | rexlimddv 2592 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) |