ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex GIF version

Theorem resqrexlemex 11190
Description: Lemma for resqrex 11191. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemex (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝜑,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem resqrexlemex
Dummy variables 𝑟 𝑛 𝑒 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemcvg 11184 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
5 simprl 529 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝑟 ∈ ℝ)
62adantr 276 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝐴 ∈ ℝ)
73adantr 276 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝐴)
8 simprr 531 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
9 fveq2 5558 . . . . . . . . . . . 12 (𝑘 = 𝑐 → (𝐹𝑘) = (𝐹𝑐))
109breq1d 4043 . . . . . . . . . . 11 (𝑘 = 𝑐 → ((𝐹𝑘) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑒)))
119oveq1d 5937 . . . . . . . . . . . 12 (𝑘 = 𝑐 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑐) + 𝑒))
1211breq2d 4045 . . . . . . . . . . 11 (𝑘 = 𝑐 → (𝑟 < ((𝐹𝑘) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑒)))
1310, 12anbi12d 473 . . . . . . . . . 10 (𝑘 = 𝑐 → (((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1413cbvralv 2729 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1514rexbii 2504 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
16 fveq2 5558 . . . . . . . . . 10 (𝑛 = 𝑏 → (ℤ𝑛) = (ℤ𝑏))
1716raleqdv 2699 . . . . . . . . 9 (𝑛 = 𝑏 → (∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1817cbvrexv 2730 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1915, 18bitri 184 . . . . . . 7 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
2019ralbii 2503 . . . . . 6 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
21 oveq2 5930 . . . . . . . . . 10 (𝑒 = 𝑎 → (𝑟 + 𝑒) = (𝑟 + 𝑎))
2221breq2d 4045 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑐) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑎)))
23 oveq2 5930 . . . . . . . . . 10 (𝑒 = 𝑎 → ((𝐹𝑐) + 𝑒) = ((𝐹𝑐) + 𝑎))
2423breq2d 4045 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑟 < ((𝐹𝑐) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑎)))
2522, 24anbi12d 473 . . . . . . . 8 (𝑒 = 𝑎 → (((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2625rexralbidv 2523 . . . . . . 7 (𝑒 = 𝑎 → (∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2726cbvralv 2729 . . . . . 6 (∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
2820, 27bitri 184 . . . . 5 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
298, 28sylib 122 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
301, 6, 7, 5, 29resqrexlemgt0 11185 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝑟)
311, 6, 7, 5, 8resqrexlemsqa 11189 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → (𝑟↑2) = 𝐴)
32 breq2 4037 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
33 oveq1 5929 . . . . . 6 (𝑥 = 𝑟 → (𝑥↑2) = (𝑟↑2))
3433eqeq1d 2205 . . . . 5 (𝑥 = 𝑟 → ((𝑥↑2) = 𝐴 ↔ (𝑟↑2) = 𝐴))
3532, 34anbi12d 473 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)))
3635rspcev 2868 . . 3 ((𝑟 ∈ ℝ ∧ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
375, 30, 31, 36syl12anc 1247 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
384, 37rexlimddv 2619 1 (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {csn 3622   class class class wbr 4033   × cxp 4661  cfv 5258  (class class class)co 5922  cmpo 5924  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062   / cdiv 8699  cn 8990  2c2 9041  cuz 9601  +crp 9728  seqcseq 10539  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  resqrex  11191
  Copyright terms: Public domain W3C validator