ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexbidv GIF version

Theorem 2rexbidv 2532
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2rexbidv (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem 2rexbidv
StepHypRef Expression
1 2ralbidv.1 . . 3 (𝜑 → (𝜓𝜒))
21rexbidv 2508 . 2 (𝜑 → (∃𝑦𝐵 𝜓 ↔ ∃𝑦𝐵 𝜒))
32rexbidv 2508 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 ↔ ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-rex 2491
This theorem is referenced by:  f1oiso  5908  elrnmpog  6071  elrnmpo  6072  ralrnmpo  6073  rexrnmpo  6074  ovelrn  6108  eroveu  6726  genipv  7642  genpelxp  7644  genpelvl  7645  genpelvu  7646  axcnre  8014  apreap  8680  apreim  8696  aprcl  8739  aptap  8743  bezoutlemnewy  12392  bezoutlema  12395  bezoutlemb  12396  pythagtriplem19  12680  pceu  12693  pcval  12694  pczpre  12695  pcdiv  12700  4sqlem2  12787  4sqlem3  12788  4sqlem4  12790  4sqexercise2  12797  4sqlemsdc  12798  4sq  12808  znunit  14496  txuni2  14803  txbas  14805  txdis1cn  14825  elply  15281  2sqlem2  15667  2sqlem8  15675  2sqlem9  15676
  Copyright terms: Public domain W3C validator