| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 2498 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 2498 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-rex 2481 |
| This theorem is referenced by: f1oiso 5876 elrnmpog 6039 elrnmpo 6040 ralrnmpo 6041 rexrnmpo 6042 ovelrn 6076 eroveu 6694 genipv 7595 genpelxp 7597 genpelvl 7598 genpelvu 7599 axcnre 7967 apreap 8633 apreim 8649 aprcl 8692 aptap 8696 bezoutlemnewy 12190 bezoutlema 12193 bezoutlemb 12194 pythagtriplem19 12478 pceu 12491 pcval 12492 pczpre 12493 pcdiv 12498 4sqlem2 12585 4sqlem3 12586 4sqlem4 12588 4sqexercise2 12595 4sqlemsdc 12596 4sq 12606 znunit 14293 txuni2 14600 txbas 14602 txdis1cn 14622 elply 15078 2sqlem2 15464 2sqlem8 15472 2sqlem9 15473 |
| Copyright terms: Public domain | W3C validator |