| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 2508 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 2508 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-rex 2491 |
| This theorem is referenced by: f1oiso 5908 elrnmpog 6071 elrnmpo 6072 ralrnmpo 6073 rexrnmpo 6074 ovelrn 6108 eroveu 6726 genipv 7642 genpelxp 7644 genpelvl 7645 genpelvu 7646 axcnre 8014 apreap 8680 apreim 8696 aprcl 8739 aptap 8743 bezoutlemnewy 12392 bezoutlema 12395 bezoutlemb 12396 pythagtriplem19 12680 pceu 12693 pcval 12694 pczpre 12695 pcdiv 12700 4sqlem2 12787 4sqlem3 12788 4sqlem4 12790 4sqexercise2 12797 4sqlemsdc 12798 4sq 12808 znunit 14496 txuni2 14803 txbas 14805 txdis1cn 14825 elply 15281 2sqlem2 15667 2sqlem8 15675 2sqlem9 15676 |
| Copyright terms: Public domain | W3C validator |