Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version |
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | rexbidv 2467 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 2467 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-rex 2450 |
This theorem is referenced by: f1oiso 5794 elrnmpog 5954 elrnmpo 5955 ralrnmpo 5956 rexrnmpo 5957 ovelrn 5990 eroveu 6592 genipv 7450 genpelxp 7452 genpelvl 7453 genpelvu 7454 axcnre 7822 apreap 8485 apreim 8501 aprcl 8544 bezoutlemnewy 11929 bezoutlema 11932 bezoutlemb 11933 pythagtriplem19 12214 pceu 12227 pcval 12228 pczpre 12229 pcdiv 12234 4sqlem2 12319 4sqlem3 12320 4sqlem4 12322 txuni2 12896 txbas 12898 txdis1cn 12918 2sqlem2 13591 2sqlem8 13599 2sqlem9 13600 |
Copyright terms: Public domain | W3C validator |