| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 2498 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 2498 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-rex 2481 |
| This theorem is referenced by: f1oiso 5876 elrnmpog 6039 elrnmpo 6040 ralrnmpo 6041 rexrnmpo 6042 ovelrn 6076 eroveu 6694 genipv 7593 genpelxp 7595 genpelvl 7596 genpelvu 7597 axcnre 7965 apreap 8631 apreim 8647 aprcl 8690 aptap 8694 bezoutlemnewy 12188 bezoutlema 12191 bezoutlemb 12192 pythagtriplem19 12476 pceu 12489 pcval 12490 pczpre 12491 pcdiv 12496 4sqlem2 12583 4sqlem3 12584 4sqlem4 12586 4sqexercise2 12593 4sqlemsdc 12594 4sq 12604 znunit 14291 txuni2 14576 txbas 14578 txdis1cn 14598 elply 15054 2sqlem2 15440 2sqlem8 15448 2sqlem9 15449 |
| Copyright terms: Public domain | W3C validator |