| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 2506 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 2506 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-rex 2489 |
| This theorem is referenced by: f1oiso 5894 elrnmpog 6057 elrnmpo 6058 ralrnmpo 6059 rexrnmpo 6060 ovelrn 6094 eroveu 6712 genipv 7621 genpelxp 7623 genpelvl 7624 genpelvu 7625 axcnre 7993 apreap 8659 apreim 8675 aprcl 8718 aptap 8722 bezoutlemnewy 12288 bezoutlema 12291 bezoutlemb 12292 pythagtriplem19 12576 pceu 12589 pcval 12590 pczpre 12591 pcdiv 12596 4sqlem2 12683 4sqlem3 12684 4sqlem4 12686 4sqexercise2 12693 4sqlemsdc 12694 4sq 12704 znunit 14392 txuni2 14699 txbas 14701 txdis1cn 14721 elply 15177 2sqlem2 15563 2sqlem8 15571 2sqlem9 15572 |
| Copyright terms: Public domain | W3C validator |