| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 2506 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 2506 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-rex 2489 |
| This theorem is referenced by: f1oiso 5894 elrnmpog 6057 elrnmpo 6058 ralrnmpo 6059 rexrnmpo 6060 ovelrn 6094 eroveu 6712 genipv 7621 genpelxp 7623 genpelvl 7624 genpelvu 7625 axcnre 7993 apreap 8659 apreim 8675 aprcl 8718 aptap 8722 bezoutlemnewy 12259 bezoutlema 12262 bezoutlemb 12263 pythagtriplem19 12547 pceu 12560 pcval 12561 pczpre 12562 pcdiv 12567 4sqlem2 12654 4sqlem3 12655 4sqlem4 12657 4sqexercise2 12664 4sqlemsdc 12665 4sq 12675 znunit 14363 txuni2 14670 txbas 14672 txdis1cn 14692 elply 15148 2sqlem2 15534 2sqlem8 15542 2sqlem9 15543 |
| Copyright terms: Public domain | W3C validator |