| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 2531 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 2531 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-rex 2514 |
| This theorem is referenced by: f1oiso 5949 elrnmpog 6116 elrnmpo 6117 ralrnmpo 6118 rexrnmpo 6119 ovelrn 6153 eroveu 6771 genipv 7692 genpelxp 7694 genpelvl 7695 genpelvu 7696 axcnre 8064 apreap 8730 apreim 8746 aprcl 8789 aptap 8793 bezoutlemnewy 12512 bezoutlema 12515 bezoutlemb 12516 pythagtriplem19 12800 pceu 12813 pcval 12814 pczpre 12815 pcdiv 12820 4sqlem2 12907 4sqlem3 12908 4sqlem4 12910 4sqexercise2 12917 4sqlemsdc 12918 4sq 12928 znunit 14617 txuni2 14924 txbas 14926 txdis1cn 14946 elply 15402 2sqlem2 15788 2sqlem8 15796 2sqlem9 15797 upgredg 15936 |
| Copyright terms: Public domain | W3C validator |