![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version |
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | rexbidv 2410 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 2410 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wrex 2389 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-4 1468 ax-17 1487 ax-ial 1495 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-rex 2394 |
This theorem is referenced by: f1oiso 5679 elrnmpog 5835 elrnmpo 5836 ralrnmpo 5837 rexrnmpo 5838 ovelrn 5871 eroveu 6472 genipv 7259 genpelxp 7261 genpelvl 7262 genpelvu 7263 axcnre 7610 apreap 8261 apreim 8277 bezoutlemnewy 11524 bezoutlema 11527 bezoutlemb 11528 txuni2 12261 txbas 12263 txdis1cn 12283 |
Copyright terms: Public domain | W3C validator |