Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version |
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | rexbidv 2471 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 2471 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-rex 2454 |
This theorem is referenced by: f1oiso 5805 elrnmpog 5965 elrnmpo 5966 ralrnmpo 5967 rexrnmpo 5968 ovelrn 6001 eroveu 6604 genipv 7471 genpelxp 7473 genpelvl 7474 genpelvu 7475 axcnre 7843 apreap 8506 apreim 8522 aprcl 8565 bezoutlemnewy 11951 bezoutlema 11954 bezoutlemb 11955 pythagtriplem19 12236 pceu 12249 pcval 12250 pczpre 12251 pcdiv 12256 4sqlem2 12341 4sqlem3 12342 4sqlem4 12344 txuni2 13050 txbas 13052 txdis1cn 13072 2sqlem2 13745 2sqlem8 13753 2sqlem9 13754 |
Copyright terms: Public domain | W3C validator |