| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rexbidv 2506 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
| 3 | 2 | rexbidv 2506 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-rex 2489 |
| This theorem is referenced by: f1oiso 5885 elrnmpog 6048 elrnmpo 6049 ralrnmpo 6050 rexrnmpo 6051 ovelrn 6085 eroveu 6703 genipv 7604 genpelxp 7606 genpelvl 7607 genpelvu 7608 axcnre 7976 apreap 8642 apreim 8658 aprcl 8701 aptap 8705 bezoutlemnewy 12236 bezoutlema 12239 bezoutlemb 12240 pythagtriplem19 12524 pceu 12537 pcval 12538 pczpre 12539 pcdiv 12544 4sqlem2 12631 4sqlem3 12632 4sqlem4 12634 4sqexercise2 12641 4sqlemsdc 12642 4sq 12652 znunit 14339 txuni2 14646 txbas 14648 txdis1cn 14668 elply 15124 2sqlem2 15510 2sqlem8 15518 2sqlem9 15519 |
| Copyright terms: Public domain | W3C validator |