![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2rexbidv | GIF version |
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2rexbidv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | rexbidv 2495 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |
3 | 2 | rexbidv 2495 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-rex 2478 |
This theorem is referenced by: f1oiso 5869 elrnmpog 6031 elrnmpo 6032 ralrnmpo 6033 rexrnmpo 6034 ovelrn 6067 eroveu 6680 genipv 7569 genpelxp 7571 genpelvl 7572 genpelvu 7573 axcnre 7941 apreap 8606 apreim 8622 aprcl 8665 aptap 8669 bezoutlemnewy 12133 bezoutlema 12136 bezoutlemb 12137 pythagtriplem19 12420 pceu 12433 pcval 12434 pczpre 12435 pcdiv 12440 4sqlem2 12527 4sqlem3 12528 4sqlem4 12530 4sqexercise2 12537 4sqlemsdc 12538 4sq 12548 znunit 14147 txuni2 14424 txbas 14426 txdis1cn 14446 elply 14880 2sqlem2 15202 2sqlem8 15210 2sqlem9 15211 |
Copyright terms: Public domain | W3C validator |