| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmcvg | GIF version | ||
| Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| lmcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmcvg.3 | ⊢ (𝜑 → 𝑃 ∈ 𝑈) |
| lmcvg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmcvg.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcvg.6 | ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
| Ref | Expression |
|---|---|
| lmcvg | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcvg.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑈) | |
| 2 | eleq2 2293 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑃 ∈ 𝑢 ↔ 𝑃 ∈ 𝑈)) | |
| 3 | eleq2 2293 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ 𝑈)) | |
| 4 | 3 | rexralbidv 2556 | . . . 4 ⊢ (𝑢 = 𝑈 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
| 5 | 2, 4 | imbi12d 234 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈))) |
| 6 | lmcvg.5 | . . . . . 6 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 7 | lmrcl 14874 | . . . . . . . . 9 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) | |
| 8 | 6, 7 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 9 | eqid 2229 | . . . . . . . . 9 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | toptopon 14700 | . . . . . . . 8 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 11 | 8, 10 | sylib 122 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 12 | lmcvg.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 13 | lmcvg.4 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 14 | 11, 12, 13 | lmbr2 14896 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 15 | 6, 14 | mpbid 147 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 16 | 15 | simp3d 1035 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 17 | simpr 110 | . . . . . . . 8 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝐹‘𝑘) ∈ 𝑢) | |
| 18 | 17 | ralimi 2593 | . . . . . . 7 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
| 19 | 18 | reximi 2627 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
| 20 | 19 | imim2i 12 | . . . . 5 ⊢ ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 21 | 20 | ralimi 2593 | . . . 4 ⊢ (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 22 | 16, 21 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 23 | lmcvg.6 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐽) | |
| 24 | 5, 22, 23 | rspcdva 2912 | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
| 25 | 1, 24 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ∪ cuni 3888 class class class wbr 4083 dom cdm 4719 ‘cfv 5318 (class class class)co 6007 ↑pm cpm 6804 ℂcc 8005 ℤcz 9454 ℤ≥cuz 9730 Topctop 14679 TopOnctopon 14692 ⇝𝑡clm 14869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pm 6806 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-top 14680 df-topon 14693 df-lm 14872 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |