| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmcvg | GIF version | ||
| Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.) |
| Ref | Expression |
|---|---|
| lmcvg.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmcvg.3 | ⊢ (𝜑 → 𝑃 ∈ 𝑈) |
| lmcvg.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmcvg.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcvg.6 | ⊢ (𝜑 → 𝑈 ∈ 𝐽) |
| Ref | Expression |
|---|---|
| lmcvg | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcvg.3 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑈) | |
| 2 | eleq2 2260 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑃 ∈ 𝑢 ↔ 𝑃 ∈ 𝑈)) | |
| 3 | eleq2 2260 | . . . . 5 ⊢ (𝑢 = 𝑈 → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ 𝑈)) | |
| 4 | 3 | rexralbidv 2523 | . . . 4 ⊢ (𝑢 = 𝑈 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
| 5 | 2, 4 | imbi12d 234 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈))) |
| 6 | lmcvg.5 | . . . . . 6 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 7 | lmrcl 14427 | . . . . . . . . 9 ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) | |
| 8 | 6, 7 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 9 | eqid 2196 | . . . . . . . . 9 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | toptopon 14254 | . . . . . . . 8 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 11 | 8, 10 | sylib 122 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 12 | lmcvg.1 | . . . . . . 7 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 13 | lmcvg.4 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 14 | 11, 12, 13 | lmbr2 14450 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 15 | 6, 14 | mpbid 147 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm ℂ) ∧ 𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 16 | 15 | simp3d 1013 | . . . 4 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 17 | simpr 110 | . . . . . . . 8 ⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → (𝐹‘𝑘) ∈ 𝑢) | |
| 18 | 17 | ralimi 2560 | . . . . . . 7 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
| 19 | 18 | reximi 2594 | . . . . . 6 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) |
| 20 | 19 | imim2i 12 | . . . . 5 ⊢ ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 21 | 20 | ralimi 2560 | . . . 4 ⊢ (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 22 | 16, 21 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) |
| 23 | lmcvg.6 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐽) | |
| 24 | 5, 22, 23 | rspcdva 2873 | . 2 ⊢ (𝜑 → (𝑃 ∈ 𝑈 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈)) |
| 25 | 1, 24 | mpd 13 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∪ cuni 3839 class class class wbr 4033 dom cdm 4663 ‘cfv 5258 (class class class)co 5922 ↑pm cpm 6708 ℂcc 7877 ℤcz 9326 ℤ≥cuz 9601 Topctop 14233 TopOnctopon 14246 ⇝𝑡clm 14423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pm 6710 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-top 14234 df-topon 14247 df-lm 14426 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |