ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemres GIF version

Theorem cvg1nlemres 11296
Description: Lemma for cvg1n 11297. The original sequence 𝐹 has a limit (turns out it is the same as the limit of the modified sequence 𝐺). (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f (𝜑𝐹:ℕ⟶ℝ)
cvg1n.c (𝜑𝐶 ∈ ℝ+)
cvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
cvg1nlem.g 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))
cvg1nlem.z (𝜑𝑍 ∈ ℕ)
cvg1nlem.start (𝜑𝐶 < 𝑍)
Assertion
Ref Expression
cvg1nlemres (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝐶,𝑖,𝑘   𝐶,𝑛,𝑘   𝑗,𝐹,𝑘,𝑛   𝑖,𝐺,𝑦,𝑘   𝑛,𝐺   𝑥,𝐺,𝑖,𝑦   𝑖,𝑍,𝑗,𝑘   𝑛,𝑍   𝜑,𝑖,𝑥,𝑦,𝑗   𝜑,𝑘,𝑛   𝑥,𝑗,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖)   𝐺(𝑗)   𝑍(𝑥,𝑦)

Proof of Theorem cvg1nlemres
Dummy variables 𝑒 𝑎 𝑏 𝑐 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvg1n.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
2 cvg1n.c . . . 4 (𝜑𝐶 ∈ ℝ+)
3 cvg1n.cau . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
4 cvg1nlem.g . . . 4 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))
5 cvg1nlem.z . . . 4 (𝜑𝑍 ∈ ℕ)
6 cvg1nlem.start . . . 4 (𝜑𝐶 < 𝑍)
71, 2, 3, 4, 5, 6cvg1nlemf 11294 . . 3 (𝜑𝐺:ℕ⟶ℝ)
81, 2, 3, 4, 5, 6cvg1nlemcau 11295 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐺𝑛) < ((𝐺𝑘) + (1 / 𝑛)) ∧ (𝐺𝑘) < ((𝐺𝑛) + (1 / 𝑛))))
97, 8caucvgre 11292 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)))
10 fveq2 5576 . . . . . . . . . . 11 (𝑎 = 𝑤 → (ℤ𝑎) = (ℤ𝑤))
1110raleqdv 2708 . . . . . . . . . 10 (𝑎 = 𝑤 → (∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))))
1211cbvrexv 2739 . . . . . . . . 9 (∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ∃𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)))
1312ralbii 2512 . . . . . . . 8 (∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)))
1413anbi2i 457 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ↔ ((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))))
1514anbi1i 458 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ↔ (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+))
16 oveq2 5952 . . . . . . . . . . . 12 (𝑐 = (𝑥 / 2) → (𝑦 + 𝑐) = (𝑦 + (𝑥 / 2)))
1716breq2d 4056 . . . . . . . . . . 11 (𝑐 = (𝑥 / 2) → ((𝐺𝑏) < (𝑦 + 𝑐) ↔ (𝐺𝑏) < (𝑦 + (𝑥 / 2))))
18 oveq2 5952 . . . . . . . . . . . 12 (𝑐 = (𝑥 / 2) → ((𝐺𝑏) + 𝑐) = ((𝐺𝑏) + (𝑥 / 2)))
1918breq2d 4056 . . . . . . . . . . 11 (𝑐 = (𝑥 / 2) → (𝑦 < ((𝐺𝑏) + 𝑐) ↔ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
2017, 19anbi12d 473 . . . . . . . . . 10 (𝑐 = (𝑥 / 2) → (((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2)))))
2120rexralbidv 2532 . . . . . . . . 9 (𝑐 = (𝑥 / 2) → (∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2)))))
22 simplr 528 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)))
23 simpr 110 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2423rphalfcld 9831 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
2521, 22, 24rspcdva 2882 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
2615, 25sylbir 135 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
272rpred 9818 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
2827ad4antr 494 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝐶 ∈ ℝ)
29 2re 9106 . . . . . . . . . . . . . 14 2 ∈ ℝ
3029a1i 9 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 2 ∈ ℝ)
3128, 30remulcld 8103 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → (𝐶 · 2) ∈ ℝ)
32 simplr 528 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝑥 ∈ ℝ+)
3331, 32rerpdivcld 9850 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ((𝐶 · 2) / 𝑥) ∈ ℝ)
345ad4antr 494 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝑍 ∈ ℕ)
3533, 34nndivred 9086 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → (((𝐶 · 2) / 𝑥) / 𝑍) ∈ ℝ)
36 simprl 529 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝑎 ∈ ℕ)
3736nnred 9049 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝑎 ∈ ℝ)
3835, 37readdcld 8102 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) ∈ ℝ)
39 arch 9292 . . . . . . . . 9 (((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) ∈ ℝ → ∃𝑒 ∈ ℕ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)
4038, 39syl 14 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ∃𝑒 ∈ ℕ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)
41 simprl 529 . . . . . . . . . 10 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → 𝑒 ∈ ℕ)
4234adantr 276 . . . . . . . . . 10 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → 𝑍 ∈ ℕ)
4341, 42nnmulcld 9085 . . . . . . . . 9 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → (𝑒 · 𝑍) ∈ ℕ)
441ad6antr 498 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝐹:ℕ⟶ℝ)
45 simplrl 535 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑒 ∈ ℕ)
465ad6antr 498 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑍 ∈ ℕ)
4745, 46nnmulcld 9085 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑒 · 𝑍) ∈ ℕ)
48 eluznn 9721 . . . . . . . . . . . . . . . 16 (((𝑒 · 𝑍) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑖 ∈ ℕ)
4947, 48sylancom 420 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑖 ∈ ℕ)
5044, 49ffvelcdmd 5716 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) ∈ ℝ)
5144, 47ffvelcdmd 5716 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹‘(𝑒 · 𝑍)) ∈ ℝ)
5232ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℝ+)
5352rpred 9818 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℝ)
5453rehalfcld 9284 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑥 / 2) ∈ ℝ)
5551, 54readdcld 8102 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)) ∈ ℝ)
56 simpllr 534 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → 𝑦 ∈ ℝ)
5756ad3antrrr 492 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 ∈ ℝ)
5857, 54readdcld 8102 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑦 + (𝑥 / 2)) ∈ ℝ)
5958, 54readdcld 8102 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝑦 + (𝑥 / 2)) + (𝑥 / 2)) ∈ ℝ)
6027ad6antr 498 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝐶 ∈ ℝ)
6160, 47nndivred 9086 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐶 / (𝑒 · 𝑍)) ∈ ℝ)
6251, 61readdcld 8102 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))) ∈ ℝ)
63 fveq2 5576 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
6463oveq1d 5959 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) = ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))))
6564breq2d 4056 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ↔ (𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍)))))
6663breq1d 4054 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))) ↔ (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))))
6765, 66anbi12d 473 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))) ↔ ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))))
68 fveq2 5576 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑒 · 𝑍) → (ℤ𝑛) = (ℤ‘(𝑒 · 𝑍)))
69 fveq2 5576 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑒 · 𝑍) → (𝐹𝑛) = (𝐹‘(𝑒 · 𝑍)))
70 oveq2 5952 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = (𝑒 · 𝑍) → (𝐶 / 𝑛) = (𝐶 / (𝑒 · 𝑍)))
7170oveq2d 5960 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑒 · 𝑍) → ((𝐹𝑘) + (𝐶 / 𝑛)) = ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))))
7269, 71breq12d 4057 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑒 · 𝑍) → ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ↔ (𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍)))))
7369, 70oveq12d 5962 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑒 · 𝑍) → ((𝐹𝑛) + (𝐶 / 𝑛)) = ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))
7473breq2d 4056 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑒 · 𝑍) → ((𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))))
7572, 74anbi12d 473 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑒 · 𝑍) → (((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))))
7668, 75raleqbidv 2718 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑒 · 𝑍) → (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑘 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))))
773ad6antr 498 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
7876, 77, 47rspcdva 2882 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ∀𝑘 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))))
79 simpr 110 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑖 ∈ (ℤ‘(𝑒 · 𝑍)))
8067, 78, 79rspcdva 2882 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))))
8180simprd 114 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))
82 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
8382ad3antrrr 492 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℝ+)
8483rpred 9818 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℝ)
8584rehalfcld 9284 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑥 / 2) ∈ ℝ)
862ad6antr 498 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝐶 ∈ ℝ+)
8736ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 ∈ ℕ)
88 simplrr 536 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)
8986, 83, 46, 45, 87, 88cvg1nlemcxze 11293 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐶 / (𝑒 · 𝑍)) < (𝑥 / 2))
9061, 85, 89ltled 8191 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐶 / (𝑒 · 𝑍)) ≤ (𝑥 / 2))
9161, 54, 51, 90leadd2dd 8633 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))) ≤ ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))
9250, 62, 55, 81, 91ltletrd 8496 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))
93 fveq2 5576 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑒 → (𝐺𝑏) = (𝐺𝑒))
9493breq1d 4054 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑒 → ((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ↔ (𝐺𝑒) < (𝑦 + (𝑥 / 2))))
9593oveq1d 5959 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑒 → ((𝐺𝑏) + (𝑥 / 2)) = ((𝐺𝑒) + (𝑥 / 2)))
9695breq2d 4056 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑒 → (𝑦 < ((𝐺𝑏) + (𝑥 / 2)) ↔ 𝑦 < ((𝐺𝑒) + (𝑥 / 2))))
9794, 96anbi12d 473 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑒 → (((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))) ↔ ((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑒) + (𝑥 / 2)))))
98 simprr 531 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
9998ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
10087nnred 9049 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 ∈ ℝ)
10145nnred 9049 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑒 ∈ ℝ)
102 2rp 9780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
103102a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 2 ∈ ℝ+)
10486, 103rpmulcld 9835 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐶 · 2) ∈ ℝ+)
105104, 83rpdivcld 9836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐶 · 2) / 𝑥) ∈ ℝ+)
10646nnrpd 9816 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑍 ∈ ℝ+)
107105, 106rpdivcld 9836 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐶 · 2) / 𝑥) / 𝑍) ∈ ℝ+)
108107rpred 9818 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐶 · 2) / 𝑥) / 𝑍) ∈ ℝ)
109108, 100readdcld 8102 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) ∈ ℝ)
110100, 107ltaddrp2d 9853 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 < ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎))
111100, 109, 101, 110, 88lttrd 8198 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 < 𝑒)
112100, 101, 111ltled 8191 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎𝑒)
11387nnzd 9494 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 ∈ ℤ)
11445nnzd 9494 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑒 ∈ ℤ)
115 eluz 9661 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℤ ∧ 𝑒 ∈ ℤ) → (𝑒 ∈ (ℤ𝑎) ↔ 𝑎𝑒))
116113, 114, 115syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑒 ∈ (ℤ𝑎) ↔ 𝑎𝑒))
117112, 116mpbird 167 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑒 ∈ (ℤ𝑎))
11897, 99, 117rspcdva 2882 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑒) + (𝑥 / 2))))
119 oveq1 5951 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑒 → (𝑗 · 𝑍) = (𝑒 · 𝑍))
120119fveq2d 5580 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑒 → (𝐹‘(𝑗 · 𝑍)) = (𝐹‘(𝑒 · 𝑍)))
121120, 4fvmptg 5655 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 ∈ ℕ ∧ (𝐹‘(𝑒 · 𝑍)) ∈ ℝ) → (𝐺𝑒) = (𝐹‘(𝑒 · 𝑍)))
12245, 51, 121syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐺𝑒) = (𝐹‘(𝑒 · 𝑍)))
123122breq1d 4054 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ↔ (𝐹‘(𝑒 · 𝑍)) < (𝑦 + (𝑥 / 2))))
124122oveq1d 5959 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐺𝑒) + (𝑥 / 2)) = ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))
125124breq2d 4056 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑦 < ((𝐺𝑒) + (𝑥 / 2)) ↔ 𝑦 < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2))))
126123, 125anbi12d 473 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑒) + (𝑥 / 2))) ↔ ((𝐹‘(𝑒 · 𝑍)) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))))
127118, 126mpbid 147 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2))))
128127simpld 112 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹‘(𝑒 · 𝑍)) < (𝑦 + (𝑥 / 2)))
12951, 58, 54, 128ltadd1dd 8629 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)) < ((𝑦 + (𝑥 / 2)) + (𝑥 / 2)))
13050, 55, 59, 92, 129lttrd 8198 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < ((𝑦 + (𝑥 / 2)) + (𝑥 / 2)))
13157recnd 8101 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 ∈ ℂ)
13254recnd 8101 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑥 / 2) ∈ ℂ)
133131, 132, 132addassd 8095 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝑦 + (𝑥 / 2)) + (𝑥 / 2)) = (𝑦 + ((𝑥 / 2) + (𝑥 / 2))))
134130, 133breqtrd 4070 . . . . . . . . . . . 12 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < (𝑦 + ((𝑥 / 2) + (𝑥 / 2))))
13552rpcnd 9820 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℂ)
1361352halvesd 9283 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
137136oveq2d 5960 . . . . . . . . . . . 12 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑦 + ((𝑥 / 2) + (𝑥 / 2))) = (𝑦 + 𝑥))
138134, 137breqtrd 4070 . . . . . . . . . . 11 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < (𝑦 + 𝑥))
13950, 54readdcld 8102 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) + (𝑥 / 2)) ∈ ℝ)
140139, 54readdcld 8102 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐹𝑖) + (𝑥 / 2)) + (𝑥 / 2)) ∈ ℝ)
141127simprd 114 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))
14250, 61readdcld 8102 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ∈ ℝ)
14380simpld 112 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))))
14461, 54, 50, 90leadd2dd 8633 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ≤ ((𝐹𝑖) + (𝑥 / 2)))
14551, 142, 139, 143, 144ltletrd 8496 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝑥 / 2)))
14651, 139, 54, 145ltadd1dd 8629 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)) < (((𝐹𝑖) + (𝑥 / 2)) + (𝑥 / 2)))
14757, 55, 140, 141, 146lttrd 8198 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 < (((𝐹𝑖) + (𝑥 / 2)) + (𝑥 / 2)))
14850recnd 8101 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) ∈ ℂ)
149148, 132, 132addassd 8095 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐹𝑖) + (𝑥 / 2)) + (𝑥 / 2)) = ((𝐹𝑖) + ((𝑥 / 2) + (𝑥 / 2))))
150147, 149breqtrd 4070 . . . . . . . . . . . 12 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 < ((𝐹𝑖) + ((𝑥 / 2) + (𝑥 / 2))))
151136oveq2d 5960 . . . . . . . . . . . 12 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) + ((𝑥 / 2) + (𝑥 / 2))) = ((𝐹𝑖) + 𝑥))
152150, 151breqtrd 4070 . . . . . . . . . . 11 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 < ((𝐹𝑖) + 𝑥))
153138, 152jca 306 . . . . . . . . . 10 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
154153ralrimiva 2579 . . . . . . . . 9 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → ∀𝑖 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
155 fveq2 5576 . . . . . . . . . . 11 (𝑗 = (𝑒 · 𝑍) → (ℤ𝑗) = (ℤ‘(𝑒 · 𝑍)))
156155raleqdv 2708 . . . . . . . . . 10 (𝑗 = (𝑒 · 𝑍) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) ↔ ∀𝑖 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
157156rspcev 2877 . . . . . . . . 9 (((𝑒 · 𝑍) ∈ ℕ ∧ ∀𝑖 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
15843, 154, 157syl2anc 411 . . . . . . . 8 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
15940, 158rexlimddv 2628 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
16026, 159rexlimddv 2628 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
16115, 160sylbi 121 . . . . 5 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
162161ralrimiva 2579 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
163162ex 115 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
164163reximdva 2608 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
1659, 164mpd 13 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  wrex 2485   class class class wbr 4044  cmpt 4105  wf 5267  cfv 5271  (class class class)co 5944  cr 7924   + caddc 7928   · cmul 7930   < clt 8107  cle 8108   / cdiv 8745  cn 9036  2c2 9087  cz 9372  cuz 9648  +crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776
This theorem is referenced by:  cvg1n  11297
  Copyright terms: Public domain W3C validator