ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf GIF version

Theorem elcncf 14809
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
elcncf ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧

Proof of Theorem elcncf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cncfval 14808 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
21eleq2d 2266 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)}))
3 fveq1 5557 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
4 fveq1 5557 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑤) = (𝐹𝑤))
53, 4oveq12d 5940 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓𝑥) − (𝑓𝑤)) = ((𝐹𝑥) − (𝐹𝑤)))
65fveq2d 5562 . . . . . . . 8 (𝑓 = 𝐹 → (abs‘((𝑓𝑥) − (𝑓𝑤))) = (abs‘((𝐹𝑥) − (𝐹𝑤))))
76breq1d 4043 . . . . . . 7 (𝑓 = 𝐹 → ((abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
87imbi2d 230 . . . . . 6 (𝑓 = 𝐹 → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98rexralbidv 2523 . . . . 5 (𝑓 = 𝐹 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
1092ralbidv 2521 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
1110elrab 2920 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} ↔ (𝐹 ∈ (𝐵𝑚 𝐴) ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
122, 11bitrdi 196 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹 ∈ (𝐵𝑚 𝐴) ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
13 cnex 8003 . . . . 5 ℂ ∈ V
1413ssex 4170 . . . 4 (𝐵 ⊆ ℂ → 𝐵 ∈ V)
1513ssex 4170 . . . 4 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
16 elmapg 6720 . . . 4 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐹 ∈ (𝐵𝑚 𝐴) ↔ 𝐹:𝐴𝐵))
1714, 15, 16syl2anr 290 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐵𝑚 𝐴) ↔ 𝐹:𝐴𝐵))
1817anbi1d 465 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹 ∈ (𝐵𝑚 𝐴) ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
1912, 18bitrd 188 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  wss 3157   class class class wbr 4033  wf 5254  cfv 5258  (class class class)co 5922  𝑚 cmap 6707  cc 7877   < clt 8061  cmin 8197  +crp 9728  abscabs 11162  cnccncf 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-map 6709  df-cncf 14807
This theorem is referenced by:  elcncf2  14810  cncff  14813  elcncf1di  14815  rescncf  14817  cncfmet  14828
  Copyright terms: Public domain W3C validator