Step | Hyp | Ref
| Expression |
1 | | cncfval 13199 |
. . . 4
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) |
2 | 1 | eleq2d 2236 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)})) |
3 | | fveq1 5485 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
4 | | fveq1 5485 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓‘𝑤) = (𝐹‘𝑤)) |
5 | 3, 4 | oveq12d 5860 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) − (𝑓‘𝑤)) = ((𝐹‘𝑥) − (𝐹‘𝑤))) |
6 | 5 | fveq2d 5490 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) = (abs‘((𝐹‘𝑥) − (𝐹‘𝑤)))) |
7 | 6 | breq1d 3992 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦 ↔ (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
8 | 7 | imbi2d 229 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦) ↔ ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
9 | 8 | rexralbidv 2492 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
10 | 9 | 2ralbidv 2490 |
. . . 4
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
11 | 10 | elrab 2882 |
. . 3
⊢ (𝐹 ∈ {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)} ↔ (𝐹 ∈ (𝐵 ↑𝑚 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
12 | 2, 11 | bitrdi 195 |
. 2
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹 ∈ (𝐵 ↑𝑚 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
13 | | cnex 7877 |
. . . . 5
⊢ ℂ
∈ V |
14 | 13 | ssex 4119 |
. . . 4
⊢ (𝐵 ⊆ ℂ → 𝐵 ∈ V) |
15 | 13 | ssex 4119 |
. . . 4
⊢ (𝐴 ⊆ ℂ → 𝐴 ∈ V) |
16 | | elmapg 6627 |
. . . 4
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐹 ∈ (𝐵 ↑𝑚 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
17 | 14, 15, 16 | syl2anr 288 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐵 ↑𝑚 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
18 | 17 | anbi1d 461 |
. 2
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹 ∈ (𝐵 ↑𝑚 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
19 | 12, 18 | bitrd 187 |
1
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |