![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfi | GIF version |
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfi | ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfrss 13924 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
2 | cncfrss2 13925 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
3 | elcncf2 13923 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) | |
4 | 1, 2, 3 | syl2anc 411 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) |
5 | 4 | ibi 176 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦))) |
6 | 5 | simprd 114 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
7 | oveq2 5879 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑤 − 𝑥) = (𝑤 − 𝐶)) | |
8 | 7 | fveq2d 5517 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (abs‘(𝑤 − 𝑥)) = (abs‘(𝑤 − 𝐶))) |
9 | 8 | breq1d 4012 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((abs‘(𝑤 − 𝑥)) < 𝑧 ↔ (abs‘(𝑤 − 𝐶)) < 𝑧)) |
10 | fveq2 5513 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝐹‘𝑥) = (𝐹‘𝐶)) | |
11 | 10 | oveq2d 5887 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → ((𝐹‘𝑤) − (𝐹‘𝑥)) = ((𝐹‘𝑤) − (𝐹‘𝐶))) |
12 | 11 | fveq2d 5517 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑤) − (𝐹‘𝐶)))) |
13 | 12 | breq1d 4012 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦 ↔ (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦)) |
14 | 9, 13 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = 𝐶 → (((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) ↔ ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦))) |
15 | 14 | rexralbidv 2503 | . . . 4 ⊢ (𝑥 = 𝐶 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦))) |
16 | breq2 4006 | . . . . . 6 ⊢ (𝑦 = 𝑅 → ((abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦 ↔ (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) | |
17 | 16 | imbi2d 230 | . . . . 5 ⊢ (𝑦 = 𝑅 → (((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦) ↔ ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
18 | 17 | rexralbidv 2503 | . . . 4 ⊢ (𝑦 = 𝑅 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
19 | 15, 18 | rspc2v 2854 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
20 | 6, 19 | mpan9 281 | . 2 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
21 | 20 | 3impb 1199 | 1 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ⊆ wss 3129 class class class wbr 4002 ⟶wf 5210 ‘cfv 5214 (class class class)co 5871 ℂcc 7805 < clt 7987 − cmin 8123 ℝ+crp 9648 abscabs 10998 –cn→ccncf 13919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-cnex 7898 ax-resscn 7899 ax-1cn 7900 ax-1re 7901 ax-icn 7902 ax-addcl 7903 ax-addrcl 7904 ax-mulcl 7905 ax-mulrcl 7906 ax-addcom 7907 ax-mulcom 7908 ax-addass 7909 ax-mulass 7910 ax-distr 7911 ax-i2m1 7912 ax-0lt1 7913 ax-1rid 7914 ax-0id 7915 ax-rnegex 7916 ax-precex 7917 ax-cnre 7918 ax-pre-ltirr 7919 ax-pre-ltwlin 7920 ax-pre-lttrn 7921 ax-pre-apti 7922 ax-pre-ltadd 7923 ax-pre-mulgt0 7924 ax-pre-mulext 7925 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-po 4295 df-iso 4296 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5176 df-fun 5216 df-fn 5217 df-f 5218 df-f1 5219 df-fo 5220 df-f1o 5221 df-fv 5222 df-riota 5827 df-ov 5874 df-oprab 5875 df-mpo 5876 df-map 6646 df-pnf 7989 df-mnf 7990 df-xr 7991 df-ltxr 7992 df-le 7993 df-sub 8125 df-neg 8126 df-reap 8527 df-ap 8534 df-div 8625 df-2 8973 df-cj 10843 df-re 10844 df-im 10845 df-rsqrt 10999 df-abs 11000 df-cncf 13920 |
This theorem is referenced by: cncfcdm 13931 climcncf 13933 cncfco 13940 mulcncf 13953 ivthinclemlopn 13976 ivthinclemuopn 13978 eflt 14058 |
Copyright terms: Public domain | W3C validator |