| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfi | GIF version | ||
| Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cncfi | ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfrss 15097 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) | |
| 2 | cncfrss2 15098 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) | |
| 3 | elcncf2 15096 | . . . . . 6 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) | |
| 4 | 1, 2, 3 | syl2anc 411 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) |
| 5 | 4 | ibi 176 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦))) |
| 6 | 5 | simprd 114 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)) |
| 7 | oveq2 5962 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → (𝑤 − 𝑥) = (𝑤 − 𝐶)) | |
| 8 | 7 | fveq2d 5590 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (abs‘(𝑤 − 𝑥)) = (abs‘(𝑤 − 𝐶))) |
| 9 | 8 | breq1d 4058 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((abs‘(𝑤 − 𝑥)) < 𝑧 ↔ (abs‘(𝑤 − 𝐶)) < 𝑧)) |
| 10 | fveq2 5586 | . . . . . . . . 9 ⊢ (𝑥 = 𝐶 → (𝐹‘𝑥) = (𝐹‘𝐶)) | |
| 11 | 10 | oveq2d 5970 | . . . . . . . 8 ⊢ (𝑥 = 𝐶 → ((𝐹‘𝑤) − (𝐹‘𝑥)) = ((𝐹‘𝑤) − (𝐹‘𝐶))) |
| 12 | 11 | fveq2d 5590 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑤) − (𝐹‘𝐶)))) |
| 13 | 12 | breq1d 4058 | . . . . . 6 ⊢ (𝑥 = 𝐶 → ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦 ↔ (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦)) |
| 14 | 9, 13 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = 𝐶 → (((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) ↔ ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦))) |
| 15 | 14 | rexralbidv 2533 | . . . 4 ⊢ (𝑥 = 𝐶 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦))) |
| 16 | breq2 4052 | . . . . . 6 ⊢ (𝑦 = 𝑅 → ((abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦 ↔ (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) | |
| 17 | 16 | imbi2d 230 | . . . . 5 ⊢ (𝑦 = 𝑅 → (((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦) ↔ ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
| 18 | 17 | rexralbidv 2533 | . . . 4 ⊢ (𝑦 = 𝑅 → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
| 19 | 15, 18 | rspc2v 2892 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅))) |
| 20 | 6, 19 | mpan9 281 | . 2 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
| 21 | 20 | 3impb 1202 | 1 ⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ⊆ wss 3168 class class class wbr 4048 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 ℂcc 7936 < clt 8120 − cmin 8256 ℝ+crp 9788 abscabs 11358 –cn→ccncf 15092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-map 6747 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-2 9108 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-cncf 15093 |
| This theorem is referenced by: cncfcdm 15104 climcncf 15106 cncfco 15113 mulcncf 15130 ivthinclemlopn 15158 ivthinclemuopn 15160 eflt 15297 |
| Copyright terms: Public domain | W3C validator |