Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfi GIF version

Theorem cncfi 12723
 Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfi ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
Distinct variable groups:   𝑧,𝑤,𝐴   𝑤,𝐶,𝑧   𝑤,𝐹,𝑧   𝑤,𝑅,𝑧   𝑤,𝐵,𝑧

Proof of Theorem cncfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 12720 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
2 cncfrss2 12721 . . . . . 6 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
3 elcncf2 12719 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
41, 2, 3syl2anc 408 . . . . 5 (𝐹 ∈ (𝐴cn𝐵) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
54ibi 175 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦)))
65simprd 113 . . 3 (𝐹 ∈ (𝐴cn𝐵) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))
7 oveq2 5775 . . . . . . . 8 (𝑥 = 𝐶 → (𝑤𝑥) = (𝑤𝐶))
87fveq2d 5418 . . . . . . 7 (𝑥 = 𝐶 → (abs‘(𝑤𝑥)) = (abs‘(𝑤𝐶)))
98breq1d 3934 . . . . . 6 (𝑥 = 𝐶 → ((abs‘(𝑤𝑥)) < 𝑧 ↔ (abs‘(𝑤𝐶)) < 𝑧))
10 fveq2 5414 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
1110oveq2d 5783 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐹𝑤) − (𝐹𝑥)) = ((𝐹𝑤) − (𝐹𝐶)))
1211fveq2d 5418 . . . . . . 7 (𝑥 = 𝐶 → (abs‘((𝐹𝑤) − (𝐹𝑥))) = (abs‘((𝐹𝑤) − (𝐹𝐶))))
1312breq1d 3934 . . . . . 6 (𝑥 = 𝐶 → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦))
149, 13imbi12d 233 . . . . 5 (𝑥 = 𝐶 → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) ↔ ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦)))
1514rexralbidv 2459 . . . 4 (𝑥 = 𝐶 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦)))
16 breq2 3928 . . . . . 6 (𝑦 = 𝑅 → ((abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦 ↔ (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
1716imbi2d 229 . . . . 5 (𝑦 = 𝑅 → (((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦) ↔ ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
1817rexralbidv 2459 . . . 4 (𝑦 = 𝑅 → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
1915, 18rspc2v 2797 . . 3 ((𝐶𝐴𝑅 ∈ ℝ+) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅)))
206, 19mpan9 279 . 2 ((𝐹 ∈ (𝐴cn𝐵) ∧ (𝐶𝐴𝑅 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
21203impb 1177 1 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2414  ∃wrex 2415   ⊆ wss 3066   class class class wbr 3924  ⟶wf 5114  ‘cfv 5118  (class class class)co 5767  ℂcc 7611   < clt 7793   − cmin 7926  ℝ+crp 9434  abscabs 10762  –cn→ccncf 12715 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-2 8772  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-cncf 12716 This theorem is referenced by:  cncffvrn  12727  climcncf  12729  cncfco  12736  mulcncf  12749  ivthinclemlopn  12772  ivthinclemuopn  12774
 Copyright terms: Public domain W3C validator