ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmet GIF version

Theorem bdmet 14846
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
Assertion
Ref Expression
bdmet ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem bdmet
StepHypRef Expression
1 rpxr 9755 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 9759 . . . 4 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 306 . . 3 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 stdbdmet.1 . . . . 5 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
54bdxmet 14845 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
653expb 1206 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
73, 6sylan2 286 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
8 xmetcl 14696 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ*)
983expb 1206 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
109adantlr 477 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*)
111ad2antlr 489 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ*)
12 xrmincl 11450 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*)
1310, 11, 12syl2anc 411 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*)
14 rpre 9754 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1514ad2antlr 489 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
16 xmetge0 14709 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐶𝑦))
17163expb 1206 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
1817adantlr 477 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ (𝑥𝐶𝑦))
19 rpge0 9760 . . . . . . 7 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
2019ad2antlr 489 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ 𝑅)
21 0xr 8092 . . . . . . 7 0 ∈ ℝ*
22 xrlemininf 11455 . . . . . . 7 ((0 ∈ ℝ* ∧ (𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅)))
2321, 10, 11, 22mp3an2i 1353 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅)))
2418, 20, 23mpbir2and 946 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
25 xrmin2inf 11452 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ*𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)
2610, 11, 25syl2anc 411 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)
27 xrrege0 9919 . . . . 5 (((inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*𝑅 ∈ ℝ) ∧ (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∧ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ)
2813, 15, 24, 26, 27syl22anc 1250 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ)
2928ralrimivva 2579 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → ∀𝑥𝑋𝑦𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ)
304fmpo 6268 . . 3 (∀𝑥𝑋𝑦𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ)
3129, 30sylib 122 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
32 ismet2 14698 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
337, 31, 32sylanbrc 417 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  {cpr 3624   class class class wbr 4034   × cxp 4662  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  infcinf 7058  cr 7897  0cc0 7898  *cxr 8079   < clt 8080  cle 8081  +crp 9747  ∞Metcxmet 14170  Metcmet 14171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-rp 9748  df-xneg 9866  df-xadd 9867  df-icc 9989  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-xmet 14178  df-met 14179
This theorem is referenced by:  mopnex  14849
  Copyright terms: Public domain W3C validator