Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bdmet | GIF version |
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.) |
Ref | Expression |
---|---|
stdbdmet.1 | ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) |
Ref | Expression |
---|---|
bdmet | ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 9618 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
2 | rpgt0 9622 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → 0 < 𝑅) | |
3 | 1, 2 | jca 304 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) |
4 | stdbdmet.1 | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) | |
5 | 4 | bdxmet 13295 | . . . 4 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 5 | 3expb 1199 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
7 | 3, 6 | sylan2 284 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) |
8 | xmetcl 13146 | . . . . . . . 8 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈ ℝ*) | |
9 | 8 | 3expb 1199 | . . . . . . 7 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*) |
10 | 9 | adantlr 474 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*) |
11 | 1 | ad2antlr 486 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑅 ∈ ℝ*) |
12 | xrmincl 11229 | . . . . . 6 ⊢ (((𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*) | |
13 | 10, 11, 12 | syl2anc 409 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*) |
14 | rpre 9617 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ) | |
15 | 14 | ad2antlr 486 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑅 ∈ ℝ) |
16 | xmetge0 13159 | . . . . . . . 8 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐶𝑦)) | |
17 | 16 | 3expb 1199 | . . . . . . 7 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐶𝑦)) |
18 | 17 | adantlr 474 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐶𝑦)) |
19 | rpge0 9623 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → 0 ≤ 𝑅) | |
20 | 19 | ad2antlr 486 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ 𝑅) |
21 | 0xr 7966 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
22 | xrlemininf 11234 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ (𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅))) | |
23 | 21, 10, 11, 22 | mp3an2i 1337 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅))) |
24 | 18, 20, 23 | mpbir2and 939 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) |
25 | xrmin2inf 11231 | . . . . . 6 ⊢ (((𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅) | |
26 | 10, 11, 25 | syl2anc 409 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅) |
27 | xrrege0 9782 | . . . . 5 ⊢ (((inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ* ∧ 𝑅 ∈ ℝ) ∧ (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∧ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) | |
28 | 13, 15, 24, 26, 27 | syl22anc 1234 | . . . 4 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) |
29 | 28 | ralrimivva 2552 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) |
30 | 4 | fmpo 6180 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ) |
31 | 29, 30 | sylib 121 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
32 | ismet2 13148 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
33 | 7, 31, 32 | sylanbrc 415 | 1 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 {cpr 3584 class class class wbr 3989 × cxp 4609 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 infcinf 6960 ℝcr 7773 0cc0 7774 ℝ*cxr 7953 < clt 7954 ≤ cle 7955 ℝ+crp 9610 ∞Metcxmet 12774 Metcmet 12775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-xneg 9729 df-xadd 9730 df-icc 9852 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-xmet 12782 df-met 12783 |
This theorem is referenced by: mopnex 13299 |
Copyright terms: Public domain | W3C validator |