Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bdmet | GIF version |
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.) |
Ref | Expression |
---|---|
stdbdmet.1 | ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) |
Ref | Expression |
---|---|
bdmet | ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 9597 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
2 | rpgt0 9601 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → 0 < 𝑅) | |
3 | 1, 2 | jca 304 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) |
4 | stdbdmet.1 | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) | |
5 | 4 | bdxmet 13141 | . . . 4 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |
6 | 5 | 3expb 1194 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
7 | 3, 6 | sylan2 284 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) |
8 | xmetcl 12992 | . . . . . . . 8 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈ ℝ*) | |
9 | 8 | 3expb 1194 | . . . . . . 7 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*) |
10 | 9 | adantlr 469 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*) |
11 | 1 | ad2antlr 481 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑅 ∈ ℝ*) |
12 | xrmincl 11207 | . . . . . 6 ⊢ (((𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*) | |
13 | 10, 11, 12 | syl2anc 409 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*) |
14 | rpre 9596 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ) | |
15 | 14 | ad2antlr 481 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑅 ∈ ℝ) |
16 | xmetge0 13005 | . . . . . . . 8 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐶𝑦)) | |
17 | 16 | 3expb 1194 | . . . . . . 7 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐶𝑦)) |
18 | 17 | adantlr 469 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐶𝑦)) |
19 | rpge0 9602 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → 0 ≤ 𝑅) | |
20 | 19 | ad2antlr 481 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ 𝑅) |
21 | 0xr 7945 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
22 | xrlemininf 11212 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ (𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅))) | |
23 | 21, 10, 11, 22 | mp3an2i 1332 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅))) |
24 | 18, 20, 23 | mpbir2and 934 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) |
25 | xrmin2inf 11209 | . . . . . 6 ⊢ (((𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅) | |
26 | 10, 11, 25 | syl2anc 409 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅) |
27 | xrrege0 9761 | . . . . 5 ⊢ (((inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ* ∧ 𝑅 ∈ ℝ) ∧ (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∧ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) | |
28 | 13, 15, 24, 26, 27 | syl22anc 1229 | . . . 4 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) |
29 | 28 | ralrimivva 2548 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) |
30 | 4 | fmpo 6169 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ) |
31 | 29, 30 | sylib 121 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
32 | ismet2 12994 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
33 | 7, 31, 32 | sylanbrc 414 | 1 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 {cpr 3577 class class class wbr 3982 × cxp 4602 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 infcinf 6948 ℝcr 7752 0cc0 7753 ℝ*cxr 7932 < clt 7933 ≤ cle 7934 ℝ+crp 9589 ∞Metcxmet 12620 Metcmet 12621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-map 6616 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-xneg 9708 df-xadd 9709 df-icc 9831 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-xmet 12628 df-met 12629 |
This theorem is referenced by: mopnex 13145 |
Copyright terms: Public domain | W3C validator |