| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bdmet | GIF version | ||
| Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.) |
| Ref | Expression |
|---|---|
| stdbdmet.1 | ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) |
| Ref | Expression |
|---|---|
| bdmet | ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxr 9845 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ*) | |
| 2 | rpgt0 9849 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → 0 < 𝑅) | |
| 3 | 1, 2 | jca 306 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) |
| 4 | stdbdmet.1 | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) | |
| 5 | 4 | bdxmet 15160 | . . . 4 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |
| 6 | 5 | 3expb 1228 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 7 | 3, 6 | sylan2 286 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) |
| 8 | xmetcl 15011 | . . . . . . . 8 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐶𝑦) ∈ ℝ*) | |
| 9 | 8 | 3expb 1228 | . . . . . . 7 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*) |
| 10 | 9 | adantlr 477 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ∈ ℝ*) |
| 11 | 1 | ad2antlr 489 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑅 ∈ ℝ*) |
| 12 | xrmincl 11763 | . . . . . 6 ⊢ (((𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*) | |
| 13 | 10, 11, 12 | syl2anc 411 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ*) |
| 14 | rpre 9844 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ) | |
| 15 | 14 | ad2antlr 489 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑅 ∈ ℝ) |
| 16 | xmetge0 15024 | . . . . . . . 8 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐶𝑦)) | |
| 17 | 16 | 3expb 1228 | . . . . . . 7 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐶𝑦)) |
| 18 | 17 | adantlr 477 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐶𝑦)) |
| 19 | rpge0 9850 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → 0 ≤ 𝑅) | |
| 20 | 19 | ad2antlr 489 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ 𝑅) |
| 21 | 0xr 8181 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 22 | xrlemininf 11768 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ (𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅))) | |
| 23 | 21, 10, 11, 22 | mp3an2i 1376 | . . . . . 6 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ↔ (0 ≤ (𝑥𝐶𝑦) ∧ 0 ≤ 𝑅))) |
| 24 | 18, 20, 23 | mpbir2and 950 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) |
| 25 | xrmin2inf 11765 | . . . . . 6 ⊢ (((𝑥𝐶𝑦) ∈ ℝ* ∧ 𝑅 ∈ ℝ*) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅) | |
| 26 | 10, 11, 25 | syl2anc 411 | . . . . 5 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅) |
| 27 | xrrege0 10009 | . . . . 5 ⊢ (((inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ* ∧ 𝑅 ∈ ℝ) ∧ (0 ≤ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∧ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ≤ 𝑅)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) | |
| 28 | 13, 15, 24, 26, 27 | syl22anc 1272 | . . . 4 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) |
| 29 | 28 | ralrimivva 2612 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ) |
| 30 | 4 | fmpo 6337 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ) ∈ ℝ ↔ 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| 31 | 29, 30 | sylib 122 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| 32 | ismet2 15013 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
| 33 | 7, 31, 32 | sylanbrc 417 | 1 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {cpr 3667 class class class wbr 4082 × cxp 4714 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 ∈ cmpo 5996 infcinf 7138 ℝcr 7986 0cc0 7987 ℝ*cxr 8168 < clt 8169 ≤ cle 8170 ℝ+crp 9837 ∞Metcxmet 14485 Metcmet 14486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-map 6787 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-rp 9838 df-xneg 9956 df-xadd 9957 df-icc 10079 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-xmet 14493 df-met 14494 |
| This theorem is referenced by: mopnex 15164 |
| Copyright terms: Public domain | W3C validator |