ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgecl GIF version

Theorem rpgecl 9319
Description: A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
rpgecl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)

Proof of Theorem rpgecl
StepHypRef Expression
1 simp2 950 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2 0red 7639 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ ℝ)
3 rpre 9297 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
433ad2ant1 970 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
5 rpgt0 9302 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
653ad2ant1 970 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐴)
7 simp3 951 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
82, 4, 1, 6, 7ltletrd 8052 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐵)
9 elrp 9293 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
101, 8, 9sylanbrc 411 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 930  wcel 1448   class class class wbr 3875  cr 7499  0cc0 7500   < clt 7672  cle 7673  +crp 9291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1re 7589  ax-addrcl 7592  ax-rnegex 7604  ax-pre-ltwlin 7608
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-xp 4483  df-cnv 4485  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-rp 9292
This theorem is referenced by:  divge1  9357  rpgecld  9370
  Copyright terms: Public domain W3C validator