ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgecl GIF version

Theorem rpgecl 9804
Description: A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
rpgecl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)

Proof of Theorem rpgecl
StepHypRef Expression
1 simp2 1001 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2 0red 8073 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ ℝ)
3 rpre 9782 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
433ad2ant1 1021 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
5 rpgt0 9787 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
653ad2ant1 1021 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐴)
7 simp3 1002 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
82, 4, 1, 6, 7ltletrd 8496 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 < 𝐵)
9 elrp 9777 . 2 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
101, 8, 9sylanbrc 417 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981  wcel 2176   class class class wbr 4044  cr 7924  0cc0 7925   < clt 8107  cle 8108  +crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034  ax-pre-ltwlin 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-rp 9776
This theorem is referenced by:  divge1  9845  rpgecld  9858  logge0  15352
  Copyright terms: Public domain W3C validator