| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climconst | GIF version | ||
| Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climconst.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climconst.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climconst.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climconst.4 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| climconst.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| climconst | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climconst.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 9744 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | climconst.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrrdi 2323 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ 𝑍) |
| 7 | climconst.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 8 | 7 | subidd 8453 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
| 9 | 8 | fveq2d 5633 | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = (abs‘0)) |
| 10 | abs0 11577 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
| 11 | 9, 10 | eqtrdi 2278 | . . . . . . 7 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = 0) |
| 12 | 11 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) = 0) |
| 13 | rpgt0 9869 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
| 14 | 13 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
| 15 | 12, 14 | eqbrtrd 4105 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) < 𝑥) |
| 16 | 15 | ralrimivw 2604 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) |
| 17 | fveq2 5629 | . . . . . . 7 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
| 18 | 17, 4 | eqtr4di 2280 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = 𝑍) |
| 19 | 18 | raleqdv 2734 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥)) |
| 20 | 19 | rspcev 2907 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 21 | 6, 16, 20 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 22 | 21 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
| 23 | climconst.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 24 | climconst.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 25 | 7 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| 26 | 4, 1, 23, 24, 7, 25 | clim2c 11803 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥)) |
| 27 | 22, 26 | mpbird 167 | 1 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 0cc0 8007 < clt 8189 − cmin 8325 ℤcz 9454 ℤ≥cuz 9730 ℝ+crp 9857 abscabs 11516 ⇝ cli 11797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-rp 9858 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-rsqrt 11517 df-abs 11518 df-clim 11798 |
| This theorem is referenced by: climconst2 11810 fsum3cvg 11897 fproddccvg 12091 fprodntrivap 12103 |
| Copyright terms: Public domain | W3C validator |