![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climconst | GIF version |
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climconst.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climconst.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climconst.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climconst.4 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
climconst.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
Ref | Expression |
---|---|
climconst | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climconst.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | uzid 9561 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
4 | climconst.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 3, 4 | eleqtrrdi 2283 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
6 | 5 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ 𝑍) |
7 | climconst.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
8 | 7 | subidd 8275 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
9 | 8 | fveq2d 5534 | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = (abs‘0)) |
10 | abs0 11086 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
11 | 9, 10 | eqtrdi 2238 | . . . . . . 7 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = 0) |
12 | 11 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) = 0) |
13 | rpgt0 9684 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
14 | 13 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
15 | 12, 14 | eqbrtrd 4040 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) < 𝑥) |
16 | 15 | ralrimivw 2564 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) |
17 | fveq2 5530 | . . . . . . 7 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
18 | 17, 4 | eqtr4di 2240 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = 𝑍) |
19 | 18 | raleqdv 2692 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥)) |
20 | 19 | rspcev 2856 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
21 | 6, 16, 20 | syl2anc 411 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
22 | 21 | ralrimiva 2563 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
23 | climconst.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
24 | climconst.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
25 | 7 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
26 | 4, 1, 23, 24, 7, 25 | clim2c 11311 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥)) |
27 | 22, 26 | mpbird 167 | 1 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 class class class wbr 4018 ‘cfv 5231 (class class class)co 5891 ℂcc 7828 0cc0 7830 < clt 8011 − cmin 8147 ℤcz 9272 ℤ≥cuz 9547 ℝ+crp 9672 abscabs 11025 ⇝ cli 11305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7921 ax-resscn 7922 ax-1cn 7923 ax-1re 7924 ax-icn 7925 ax-addcl 7926 ax-addrcl 7927 ax-mulcl 7928 ax-mulrcl 7929 ax-addcom 7930 ax-mulcom 7931 ax-addass 7932 ax-mulass 7933 ax-distr 7934 ax-i2m1 7935 ax-0lt1 7936 ax-1rid 7937 ax-0id 7938 ax-rnegex 7939 ax-precex 7940 ax-cnre 7941 ax-pre-ltirr 7942 ax-pre-ltwlin 7943 ax-pre-lttrn 7944 ax-pre-apti 7945 ax-pre-ltadd 7946 ax-pre-mulgt0 7947 ax-pre-mulext 7948 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-frec 6410 df-pnf 8013 df-mnf 8014 df-xr 8015 df-ltxr 8016 df-le 8017 df-sub 8149 df-neg 8150 df-reap 8551 df-ap 8558 df-div 8649 df-inn 8939 df-2 8997 df-n0 9196 df-z 9273 df-uz 9548 df-rp 9673 df-seqfrec 10465 df-exp 10539 df-cj 10870 df-rsqrt 11026 df-abs 11027 df-clim 11306 |
This theorem is referenced by: climconst2 11318 fsum3cvg 11405 fproddccvg 11599 fprodntrivap 11611 |
Copyright terms: Public domain | W3C validator |