ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climconst GIF version

Theorem climconst 11455
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst.1 𝑍 = (ℤ𝑀)
climconst.2 (𝜑𝑀 ∈ ℤ)
climconst.3 (𝜑𝐹𝑉)
climconst.4 (𝜑𝐴 ∈ ℂ)
climconst.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
climconst (𝜑𝐹𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climconst
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climconst.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2 uzid 9615 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 14 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
4 climconst.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2290 . . . . 5 (𝜑𝑀𝑍)
65adantr 276 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑍)
7 climconst.4 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
87subidd 8325 . . . . . . . . 9 (𝜑 → (𝐴𝐴) = 0)
98fveq2d 5562 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
10 abs0 11223 . . . . . . . 8 (abs‘0) = 0
119, 10eqtrdi 2245 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐴)) = 0)
1211adantr 276 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) = 0)
13 rpgt0 9740 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1413adantl 277 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
1512, 14eqbrtrd 4055 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) < 𝑥)
1615ralrimivw 2571 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥)
17 fveq2 5558 . . . . . . 7 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
1817, 4eqtr4di 2247 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = 𝑍)
1918raleqdv 2699 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥 ↔ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥))
2019rspcev 2868 . . . 4 ((𝑀𝑍 ∧ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
216, 16, 20syl2anc 411 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
2221ralrimiva 2570 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
23 climconst.3 . . 3 (𝜑𝐹𝑉)
24 climconst.5 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
257adantr 276 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
264, 1, 23, 24, 7, 25clim2c 11449 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥))
2722, 26mpbird 167 1 (𝜑𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879   < clt 8061  cmin 8197  cz 9326  cuz 9601  +crp 9728  abscabs 11162  cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by:  climconst2  11456  fsum3cvg  11543  fproddccvg  11737  fprodntrivap  11749
  Copyright terms: Public domain W3C validator