ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climconst GIF version

Theorem climconst 11253
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst.1 𝑍 = (ℤ𝑀)
climconst.2 (𝜑𝑀 ∈ ℤ)
climconst.3 (𝜑𝐹𝑉)
climconst.4 (𝜑𝐴 ∈ ℂ)
climconst.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
climconst (𝜑𝐹𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climconst
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climconst.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2 uzid 9501 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 14 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
4 climconst.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2264 . . . . 5 (𝜑𝑀𝑍)
65adantr 274 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑍)
7 climconst.4 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
87subidd 8218 . . . . . . . . 9 (𝜑 → (𝐴𝐴) = 0)
98fveq2d 5500 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
10 abs0 11022 . . . . . . . 8 (abs‘0) = 0
119, 10eqtrdi 2219 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐴)) = 0)
1211adantr 274 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) = 0)
13 rpgt0 9622 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1413adantl 275 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
1512, 14eqbrtrd 4011 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) < 𝑥)
1615ralrimivw 2544 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥)
17 fveq2 5496 . . . . . . 7 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
1817, 4eqtr4di 2221 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = 𝑍)
1918raleqdv 2671 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥 ↔ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥))
2019rspcev 2834 . . . 4 ((𝑀𝑍 ∧ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
216, 16, 20syl2anc 409 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
2221ralrimiva 2543 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
23 climconst.3 . . 3 (𝜑𝐹𝑉)
24 climconst.5 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
257adantr 274 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
264, 1, 23, 24, 7, 25clim2c 11247 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥))
2722, 26mpbird 166 1 (𝜑𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774   < clt 7954  cmin 8090  cz 9212  cuz 9487  +crp 9610  abscabs 10961  cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by:  climconst2  11254  fsum3cvg  11341  fproddccvg  11535  fprodntrivap  11547
  Copyright terms: Public domain W3C validator