Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addlelt | GIF version |
Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.) |
Ref | Expression |
---|---|
addlelt | ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgt0 9601 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
2 | 1 | 3ad2ant3 1010 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 0 < 𝐴) |
3 | rpre 9596 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
4 | 3 | 3ad2ant3 1010 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ) |
5 | simp1 987 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ) | |
6 | 4, 5 | ltaddposd 8427 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (0 < 𝐴 ↔ 𝑀 < (𝑀 + 𝐴))) |
7 | 2, 6 | mpbid 146 | . 2 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 < (𝑀 + 𝐴)) |
8 | simpl 108 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ) | |
9 | 3 | adantl 275 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ) |
10 | 8, 9 | readdcld 7928 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ) |
11 | 10 | 3adant2 1006 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ) |
12 | simp2 988 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑁 ∈ ℝ) | |
13 | ltletr 7988 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ (𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁)) | |
14 | 5, 11, 12, 13 | syl3anc 1228 | . 2 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁)) |
15 | 7, 14 | mpand 426 | 1 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 + caddc 7756 < clt 7933 ≤ cle 7934 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-pre-ltwlin 7866 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-rp 9590 |
This theorem is referenced by: zltaddlt1le 9943 |
Copyright terms: Public domain | W3C validator |