ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlelt GIF version

Theorem addlelt 9872
Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
addlelt ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))

Proof of Theorem addlelt
StepHypRef Expression
1 rpgt0 9769 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
213ad2ant3 1022 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 0 < 𝐴)
3 rpre 9764 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
433ad2ant3 1022 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
5 simp1 999 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ)
64, 5ltaddposd 8584 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (0 < 𝐴𝑀 < (𝑀 + 𝐴)))
72, 6mpbid 147 . 2 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 < (𝑀 + 𝐴))
8 simpl 109 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ)
93adantl 277 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
108, 9readdcld 8084 . . . 4 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ)
11103adant2 1018 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ)
12 simp2 1000 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑁 ∈ ℝ)
13 ltletr 8144 . . 3 ((𝑀 ∈ ℝ ∧ (𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁))
145, 11, 12, 13syl3anc 1249 . 2 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁))
157, 14mpand 429 1 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2175   class class class wbr 4043  (class class class)co 5934  cr 7906  0cc0 7907   + caddc 7910   < clt 8089  cle 8090  +crp 9757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0id 8015  ax-rnegex 8016  ax-pre-ltwlin 8020  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-cnv 4681  df-iota 5229  df-fv 5276  df-ov 5937  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-rp 9758
This theorem is referenced by:  zltaddlt1le  10111
  Copyright terms: Public domain W3C validator