Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 9597 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3981 0cc0 7749 < clt 7929 ℝ+crp 9585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rab 2452 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-rp 9586 |
This theorem is referenced by: rpregt0d 9635 ltmulgt11d 9664 ltmulgt12d 9665 gt0divd 9666 ge0divd 9667 lediv12ad 9688 expgt0 10484 nnesq 10570 bccl2 10677 resqrexlemp1rp 10944 resqrexlemover 10948 resqrexlemnm 10956 resqrexlemgt0 10958 resqrexlemglsq 10960 sqrtgt0d 11097 reccn2ap 11250 fsumlt 11401 eirraplem 11713 dvdsmodexp 11731 prmind2 12048 sqrt2irrlem 12089 modprmn0modprm0 12184 ssblex 13031 mulc1cncf 13176 cncfmptc 13182 mulcncflem 13190 cnplimclemle 13237 pilem3 13304 iooref1o 13873 trilpolemeq1 13879 nconstwlpolemgt0 13902 taupi 13909 |
Copyright terms: Public domain | W3C validator |