| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 9794 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4047 0cc0 7932 < clt 8114 ℝ+crp 9782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3171 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-rp 9783 |
| This theorem is referenced by: rpregt0d 9832 ltmulgt11d 9861 ltmulgt12d 9862 gt0divd 9863 ge0divd 9864 lediv12ad 9885 expgt0 10724 nnesq 10811 bccl2 10920 resqrexlemp1rp 11361 resqrexlemover 11365 resqrexlemnm 11373 resqrexlemgt0 11375 resqrexlemglsq 11377 sqrtgt0d 11514 reccn2ap 11668 fsumlt 11819 eirraplem 12132 dvdsmodexp 12150 bitsmod 12311 prmind2 12486 sqrt2irrlem 12527 modprmn0modprm0 12623 4sqlem11 12768 4sqlem12 12769 modxai 12783 ssblex 14947 mulc1cncf 15105 cncfmptc 15112 mulcncflem 15123 cnplimclemle 15184 pilem3 15299 sgmnncl 15504 iooref1o 16047 trilpolemeq1 16053 nconstwlpolemgt0 16077 taupi 16086 |
| Copyright terms: Public domain | W3C validator |