Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 9622 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 class class class wbr 3989 0cc0 7774 < clt 7954 ℝ+crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-rp 9611 |
This theorem is referenced by: rpregt0d 9660 ltmulgt11d 9689 ltmulgt12d 9690 gt0divd 9691 ge0divd 9692 lediv12ad 9713 expgt0 10509 nnesq 10595 bccl2 10702 resqrexlemp1rp 10970 resqrexlemover 10974 resqrexlemnm 10982 resqrexlemgt0 10984 resqrexlemglsq 10986 sqrtgt0d 11123 reccn2ap 11276 fsumlt 11427 eirraplem 11739 dvdsmodexp 11757 prmind2 12074 sqrt2irrlem 12115 modprmn0modprm0 12210 ssblex 13225 mulc1cncf 13370 cncfmptc 13376 mulcncflem 13384 cnplimclemle 13431 pilem3 13498 iooref1o 14066 trilpolemeq1 14072 nconstwlpolemgt0 14095 taupi 14102 |
Copyright terms: Public domain | W3C validator |