Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 9636 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 class class class wbr 3998 0cc0 7786 < clt 7966 ℝ+crp 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-rp 9625 |
This theorem is referenced by: rpregt0d 9674 ltmulgt11d 9703 ltmulgt12d 9704 gt0divd 9705 ge0divd 9706 lediv12ad 9727 expgt0 10523 nnesq 10609 bccl2 10716 resqrexlemp1rp 10983 resqrexlemover 10987 resqrexlemnm 10995 resqrexlemgt0 10997 resqrexlemglsq 10999 sqrtgt0d 11136 reccn2ap 11289 fsumlt 11440 eirraplem 11752 dvdsmodexp 11770 prmind2 12087 sqrt2irrlem 12128 modprmn0modprm0 12223 ssblex 13511 mulc1cncf 13656 cncfmptc 13662 mulcncflem 13670 cnplimclemle 13717 pilem3 13784 iooref1o 14352 trilpolemeq1 14358 nconstwlpolemgt0 14381 taupi 14388 |
Copyright terms: Public domain | W3C validator |