| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 9829 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 class class class wbr 4062 0cc0 7967 < clt 8149 ℝ+crp 9817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-rp 9818 |
| This theorem is referenced by: rpregt0d 9867 ltmulgt11d 9896 ltmulgt12d 9897 gt0divd 9898 ge0divd 9899 lediv12ad 9920 expgt0 10761 nnesq 10848 bccl2 10957 resqrexlemp1rp 11483 resqrexlemover 11487 resqrexlemnm 11495 resqrexlemgt0 11497 resqrexlemglsq 11499 sqrtgt0d 11636 reccn2ap 11790 fsumlt 11941 eirraplem 12254 dvdsmodexp 12272 bitsmod 12433 prmind2 12608 sqrt2irrlem 12649 modprmn0modprm0 12745 4sqlem11 12890 4sqlem12 12891 modxai 12905 ssblex 15070 mulc1cncf 15228 cncfmptc 15235 mulcncflem 15246 cnplimclemle 15307 pilem3 15422 sgmnncl 15627 iooref1o 16313 trilpolemeq1 16319 nconstwlpolemgt0 16343 taupi 16352 |
| Copyright terms: Public domain | W3C validator |