![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 9701 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 class class class wbr 4021 0cc0 7846 < clt 8027 ℝ+crp 9689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-un 3148 df-sn 3616 df-pr 3617 df-op 3619 df-br 4022 df-rp 9690 |
This theorem is referenced by: rpregt0d 9739 ltmulgt11d 9768 ltmulgt12d 9769 gt0divd 9770 ge0divd 9771 lediv12ad 9792 expgt0 10593 nnesq 10680 bccl2 10789 resqrexlemp1rp 11056 resqrexlemover 11060 resqrexlemnm 11068 resqrexlemgt0 11070 resqrexlemglsq 11072 sqrtgt0d 11209 reccn2ap 11362 fsumlt 11513 eirraplem 11825 dvdsmodexp 11843 prmind2 12163 sqrt2irrlem 12204 modprmn0modprm0 12299 4sqlem11 12444 4sqlem12 12445 ssblex 14416 mulc1cncf 14561 cncfmptc 14567 mulcncflem 14575 cnplimclemle 14622 pilem3 14689 iooref1o 15270 trilpolemeq1 15276 nconstwlpolemgt0 15300 taupi 15309 |
Copyright terms: Public domain | W3C validator |