| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 9759 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 0cc0 7898 < clt 8080 ℝ+crp 9747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9748 |
| This theorem is referenced by: rpregt0d 9797 ltmulgt11d 9826 ltmulgt12d 9827 gt0divd 9828 ge0divd 9829 lediv12ad 9850 expgt0 10683 nnesq 10770 bccl2 10879 resqrexlemp1rp 11190 resqrexlemover 11194 resqrexlemnm 11202 resqrexlemgt0 11204 resqrexlemglsq 11206 sqrtgt0d 11343 reccn2ap 11497 fsumlt 11648 eirraplem 11961 dvdsmodexp 11979 bitsmod 12140 prmind2 12315 sqrt2irrlem 12356 modprmn0modprm0 12452 4sqlem11 12597 4sqlem12 12598 modxai 12612 ssblex 14753 mulc1cncf 14911 cncfmptc 14918 mulcncflem 14929 cnplimclemle 14990 pilem3 15105 sgmnncl 15310 iooref1o 15769 trilpolemeq1 15775 nconstwlpolemgt0 15799 taupi 15808 |
| Copyright terms: Public domain | W3C validator |