| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 9869 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4083 0cc0 8007 < clt 8189 ℝ+crp 9857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-rp 9858 |
| This theorem is referenced by: rpregt0d 9907 ltmulgt11d 9936 ltmulgt12d 9937 gt0divd 9938 ge0divd 9939 lediv12ad 9960 expgt0 10802 nnesq 10889 bccl2 10998 resqrexlemp1rp 11525 resqrexlemover 11529 resqrexlemnm 11537 resqrexlemgt0 11539 resqrexlemglsq 11541 sqrtgt0d 11678 reccn2ap 11832 fsumlt 11983 eirraplem 12296 dvdsmodexp 12314 bitsmod 12475 prmind2 12650 sqrt2irrlem 12691 modprmn0modprm0 12787 4sqlem11 12932 4sqlem12 12933 modxai 12947 ssblex 15113 mulc1cncf 15271 cncfmptc 15278 mulcncflem 15289 cnplimclemle 15350 pilem3 15465 sgmnncl 15670 iooref1o 16432 trilpolemeq1 16438 nconstwlpolemgt0 16462 taupi 16471 |
| Copyright terms: Public domain | W3C validator |