| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | GIF version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | rpgt0 9740 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4033 0cc0 7879 < clt 8061 ℝ+crp 9728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-rp 9729 |
| This theorem is referenced by: rpregt0d 9778 ltmulgt11d 9807 ltmulgt12d 9808 gt0divd 9809 ge0divd 9810 lediv12ad 9831 expgt0 10664 nnesq 10751 bccl2 10860 resqrexlemp1rp 11171 resqrexlemover 11175 resqrexlemnm 11183 resqrexlemgt0 11185 resqrexlemglsq 11187 sqrtgt0d 11324 reccn2ap 11478 fsumlt 11629 eirraplem 11942 dvdsmodexp 11960 prmind2 12288 sqrt2irrlem 12329 modprmn0modprm0 12425 4sqlem11 12570 4sqlem12 12571 modxai 12585 ssblex 14667 mulc1cncf 14825 cncfmptc 14832 mulcncflem 14843 cnplimclemle 14904 pilem3 15019 sgmnncl 15224 iooref1o 15678 trilpolemeq1 15684 nconstwlpolemgt0 15708 taupi 15717 |
| Copyright terms: Public domain | W3C validator |