ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn GIF version

Theorem bdmopn 12673
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
bdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem bdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9449 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 482 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 985 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
4 xrmincl 11035 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
52, 3, 4syl2anc 408 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
6 rpre 9448 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
76ad2antll 482 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
8 0xr 7812 . . . . . . . 8 0 ∈ ℝ*
98a1i 9 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ∈ ℝ*)
10 rpgt0 9453 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
1110ad2antll 482 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
12 simpl3 986 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
13 xrltmininf 11039 . . . . . . . . 9 ((0 ∈ ℝ*𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
148, 2, 3, 13mp3an2i 1320 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
1511, 12, 14mpbir2and 928 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < inf({𝑟, 𝑅}, ℝ*, < ))
169, 5, 15xrltled 9585 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ inf({𝑟, 𝑅}, ℝ*, < ))
17 xrmin1inf 11036 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
182, 3, 17syl2anc 408 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
19 xrrege0 9608 . . . . . 6 (((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ inf({𝑟, 𝑅}, ℝ*, < ) ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
205, 7, 16, 18, 19syl22anc 1217 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
2120, 15elrpd 9481 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+)
22 simprl 520 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
23 xrmin2inf 11037 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
242, 3, 23syl2anc 408 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
2522, 5, 243jca 1161 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅))
26 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
2726bdbl 12672 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2825, 27syldan 280 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2928eqcomd 2145 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
30 breq1 3932 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑠𝑟 ↔ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟))
31 oveq2 5782 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
32 oveq2 5782 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
3331, 32eqeq12d 2154 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < ))))
3430, 33anbi12d 464 . . . . 5 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))))
3534rspcev 2789 . . . 4 ((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+ ∧ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3621, 18, 29, 35syl12anc 1214 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3736ralrimivva 2514 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
38 simp1 981 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
3926bdxmet 12670 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
40 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
41 eqid 2139 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4240, 41metequiv2 12665 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4338, 39, 42syl2anc 408 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4437, 43mpd 13 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {cpr 3528   class class class wbr 3929  cfv 5123  (class class class)co 5774  cmpo 5776  infcinf 6870  cr 7619  0cc0 7620  *cxr 7799   < clt 7800  cle 7801  +crp 9441  ∞Metcxmet 12149  ballcbl 12151  MetOpencmopn 12154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-icc 9678  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-bl 12159  df-mopn 12160  df-top 12165  df-bases 12210
This theorem is referenced by:  mopnex  12674
  Copyright terms: Public domain W3C validator