Step | Hyp | Ref
| Expression |
1 | | rpxr 9663 |
. . . . . . . 8
β’ (π β β+
β π β
β*) |
2 | 1 | ad2antll 491 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β π β
β*) |
3 | | simpl2 1001 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β π
β
β*) |
4 | | xrmincl 11276 |
. . . . . . 7
β’ ((π β β*
β§ π
β
β*) β inf({π, π
}, β*, < ) β
β*) |
5 | 2, 3, 4 | syl2anc 411 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β
inf({π, π
}, β*, < ) β
β*) |
6 | | rpre 9662 |
. . . . . . 7
β’ (π β β+
β π β
β) |
7 | 6 | ad2antll 491 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β π β
β) |
8 | | 0xr 8006 |
. . . . . . . 8
β’ 0 β
β* |
9 | 8 | a1i 9 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β 0 β
β*) |
10 | | rpgt0 9667 |
. . . . . . . . 9
β’ (π β β+
β 0 < π) |
11 | 10 | ad2antll 491 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β 0 <
π) |
12 | | simpl3 1002 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β 0 <
π
) |
13 | | xrltmininf 11280 |
. . . . . . . . 9
β’ ((0
β β* β§ π β β* β§ π
β β*)
β (0 < inf({π,
π
}, β*,
< ) β (0 < π
β§ 0 < π
))) |
14 | 8, 2, 3, 13 | mp3an2i 1342 |
. . . . . . . 8
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β (0 <
inf({π, π
}, β*, < ) β (0
< π β§ 0 < π
))) |
15 | 11, 12, 14 | mpbir2and 944 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β 0 <
inf({π, π
}, β*, <
)) |
16 | 9, 5, 15 | xrltled 9801 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β 0 β€
inf({π, π
}, β*, <
)) |
17 | | xrmin1inf 11277 |
. . . . . . 7
β’ ((π β β*
β§ π
β
β*) β inf({π, π
}, β*, < ) β€ π) |
18 | 2, 3, 17 | syl2anc 411 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β
inf({π, π
}, β*, < ) β€ π) |
19 | | xrrege0 9827 |
. . . . . 6
β’
(((inf({π, π
}, β*, < )
β β* β§ π β β) β§ (0 β€ inf({π, π
}, β*, < ) β§
inf({π, π
}, β*, < ) β€ π)) β inf({π, π
}, β*, < ) β
β) |
20 | 5, 7, 16, 18, 19 | syl22anc 1239 |
. . . . 5
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β
inf({π, π
}, β*, < ) β
β) |
21 | 20, 15 | elrpd 9695 |
. . . 4
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β
inf({π, π
}, β*, < ) β
β+) |
22 | | simprl 529 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β π§ β π) |
23 | | xrmin2inf 11278 |
. . . . . . . 8
β’ ((π β β*
β§ π
β
β*) β inf({π, π
}, β*, < ) β€ π
) |
24 | 2, 3, 23 | syl2anc 411 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β
inf({π, π
}, β*, < ) β€ π
) |
25 | 22, 5, 24 | 3jca 1177 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β (π§ β π β§ inf({π, π
}, β*, < ) β
β* β§ inf({π, π
}, β*, < ) β€ π
)) |
26 | | stdbdmet.1 |
. . . . . . 7
β’ π· = (π₯ β π, π¦ β π β¦ inf({(π₯πΆπ¦), π
}, β*, <
)) |
27 | 26 | bdbl 14042 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ inf({π, π
}, β*, < ) β
β* β§ inf({π, π
}, β*, < ) β€ π
)) β (π§(ballβπ·)inf({π, π
}, β*, < )) = (π§(ballβπΆ)inf({π, π
}, β*, <
))) |
28 | 25, 27 | syldan 282 |
. . . . 5
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β (π§(ballβπ·)inf({π, π
}, β*, < )) = (π§(ballβπΆ)inf({π, π
}, β*, <
))) |
29 | 28 | eqcomd 2183 |
. . . 4
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β (π§(ballβπΆ)inf({π, π
}, β*, < )) = (π§(ballβπ·)inf({π, π
}, β*, <
))) |
30 | | breq1 4008 |
. . . . . 6
β’ (π = inf({π, π
}, β*, < ) β (π β€ π β inf({π, π
}, β*, < ) β€ π)) |
31 | | oveq2 5885 |
. . . . . . 7
β’ (π = inf({π, π
}, β*, < ) β (π§(ballβπΆ)π ) = (π§(ballβπΆ)inf({π, π
}, β*, <
))) |
32 | | oveq2 5885 |
. . . . . . 7
β’ (π = inf({π, π
}, β*, < ) β (π§(ballβπ·)π ) = (π§(ballβπ·)inf({π, π
}, β*, <
))) |
33 | 31, 32 | eqeq12d 2192 |
. . . . . 6
β’ (π = inf({π, π
}, β*, < ) β
((π§(ballβπΆ)π ) = (π§(ballβπ·)π ) β (π§(ballβπΆ)inf({π, π
}, β*, < )) = (π§(ballβπ·)inf({π, π
}, β*, <
)))) |
34 | 30, 33 | anbi12d 473 |
. . . . 5
β’ (π = inf({π, π
}, β*, < ) β
((π β€ π β§ (π§(ballβπΆ)π ) = (π§(ballβπ·)π )) β (inf({π, π
}, β*, < ) β€ π β§ (π§(ballβπΆ)inf({π, π
}, β*, < )) = (π§(ballβπ·)inf({π, π
}, β*, <
))))) |
35 | 34 | rspcev 2843 |
. . . 4
β’
((inf({π, π
}, β*, < )
β β+ β§ (inf({π, π
}, β*, < ) β€ π β§ (π§(ballβπΆ)inf({π, π
}, β*, < )) = (π§(ballβπ·)inf({π, π
}, β*, < )))) β
βπ β
β+ (π β€
π β§ (π§(ballβπΆ)π ) = (π§(ballβπ·)π ))) |
36 | 21, 18, 29, 35 | syl12anc 1236 |
. . 3
β’ (((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β§ (π§ β π β§ π β β+)) β
βπ β
β+ (π β€
π β§ (π§(ballβπΆ)π ) = (π§(ballβπ·)π ))) |
37 | 36 | ralrimivva 2559 |
. 2
β’ ((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β βπ§ β π βπ β β+ βπ β β+
(π β€ π β§ (π§(ballβπΆ)π ) = (π§(ballβπ·)π ))) |
38 | | simp1 997 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β πΆ β (βMetβπ)) |
39 | 26 | bdxmet 14040 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β π· β (βMetβπ)) |
40 | | stdbdmopn.2 |
. . . 4
β’ π½ = (MetOpenβπΆ) |
41 | | eqid 2177 |
. . . 4
β’
(MetOpenβπ·) =
(MetOpenβπ·) |
42 | 40, 41 | metequiv2 14035 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ§ β π βπ β β+ βπ β β+
(π β€ π β§ (π§(ballβπΆ)π ) = (π§(ballβπ·)π )) β π½ = (MetOpenβπ·))) |
43 | 38, 39, 42 | syl2anc 411 |
. 2
β’ ((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β (βπ§ β π βπ β β+ βπ β β+
(π β€ π β§ (π§(ballβπΆ)π ) = (π§(ballβπ·)π )) β π½ = (MetOpenβπ·))) |
44 | 37, 43 | mpd 13 |
1
β’ ((πΆ β (βMetβπ) β§ π
β β* β§ 0 <
π
) β π½ = (MetOpenβπ·)) |