ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn GIF version

Theorem bdmopn 12699
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
bdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem bdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9471 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 482 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 985 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
4 xrmincl 11059 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
52, 3, 4syl2anc 408 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
6 rpre 9470 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
76ad2antll 482 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
8 0xr 7831 . . . . . . . 8 0 ∈ ℝ*
98a1i 9 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ∈ ℝ*)
10 rpgt0 9475 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
1110ad2antll 482 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
12 simpl3 986 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
13 xrltmininf 11063 . . . . . . . . 9 ((0 ∈ ℝ*𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
148, 2, 3, 13mp3an2i 1320 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
1511, 12, 14mpbir2and 928 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < inf({𝑟, 𝑅}, ℝ*, < ))
169, 5, 15xrltled 9608 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ inf({𝑟, 𝑅}, ℝ*, < ))
17 xrmin1inf 11060 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
182, 3, 17syl2anc 408 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
19 xrrege0 9631 . . . . . 6 (((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ inf({𝑟, 𝑅}, ℝ*, < ) ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
205, 7, 16, 18, 19syl22anc 1217 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
2120, 15elrpd 9503 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+)
22 simprl 520 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
23 xrmin2inf 11061 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
242, 3, 23syl2anc 408 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
2522, 5, 243jca 1161 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅))
26 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
2726bdbl 12698 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2825, 27syldan 280 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2928eqcomd 2145 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
30 breq1 3935 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑠𝑟 ↔ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟))
31 oveq2 5785 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
32 oveq2 5785 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
3331, 32eqeq12d 2154 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < ))))
3430, 33anbi12d 464 . . . . 5 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))))
3534rspcev 2789 . . . 4 ((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+ ∧ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3621, 18, 29, 35syl12anc 1214 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3736ralrimivva 2514 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
38 simp1 981 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
3926bdxmet 12696 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
40 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
41 eqid 2139 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4240, 41metequiv2 12691 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4338, 39, 42syl2anc 408 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4437, 43mpd 13 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {cpr 3528   class class class wbr 3932  cfv 5126  (class class class)co 5777  cmpo 5779  infcinf 6873  cr 7638  0cc0 7639  *cxr 7818   < clt 7819  cle 7820  +crp 9463  ∞Metcxmet 12175  ballcbl 12177  MetOpencmopn 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4046  ax-sep 4049  ax-nul 4057  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-iinf 4505  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-mulrcl 7738  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-precex 7749  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755  ax-pre-mulgt0 7756  ax-pre-mulext 7757  ax-arch 7758  ax-caucvg 7759
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-tr 4030  df-id 4218  df-po 4221  df-iso 4222  df-iord 4291  df-on 4293  df-ilim 4294  df-suc 4296  df-iom 4508  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-f1 5131  df-fo 5132  df-f1o 5133  df-fv 5134  df-isom 5135  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-recs 6205  df-frec 6291  df-map 6547  df-sup 6874  df-inf 6875  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-reap 8356  df-ap 8363  df-div 8452  df-inn 8740  df-2 8798  df-3 8799  df-4 8800  df-n0 8997  df-z 9074  df-uz 9346  df-q 9434  df-rp 9464  df-xneg 9582  df-xadd 9583  df-icc 9701  df-seqfrec 10243  df-exp 10317  df-cj 10638  df-re 10639  df-im 10640  df-rsqrt 10794  df-abs 10795  df-topgen 12167  df-psmet 12182  df-xmet 12183  df-bl 12185  df-mopn 12186  df-top 12191  df-bases 12236
This theorem is referenced by:  mopnex  12700
  Copyright terms: Public domain W3C validator