ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn GIF version

Theorem bdmopn 14750
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
bdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem bdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9738 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 491 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 1003 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
4 xrmincl 11433 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
52, 3, 4syl2anc 411 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
6 rpre 9737 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
76ad2antll 491 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
8 0xr 8075 . . . . . . . 8 0 ∈ ℝ*
98a1i 9 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ∈ ℝ*)
10 rpgt0 9742 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
1110ad2antll 491 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
12 simpl3 1004 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
13 xrltmininf 11437 . . . . . . . . 9 ((0 ∈ ℝ*𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
148, 2, 3, 13mp3an2i 1353 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
1511, 12, 14mpbir2and 946 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < inf({𝑟, 𝑅}, ℝ*, < ))
169, 5, 15xrltled 9876 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ inf({𝑟, 𝑅}, ℝ*, < ))
17 xrmin1inf 11434 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
182, 3, 17syl2anc 411 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
19 xrrege0 9902 . . . . . 6 (((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ inf({𝑟, 𝑅}, ℝ*, < ) ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
205, 7, 16, 18, 19syl22anc 1250 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
2120, 15elrpd 9770 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+)
22 simprl 529 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
23 xrmin2inf 11435 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
242, 3, 23syl2anc 411 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
2522, 5, 243jca 1179 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅))
26 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
2726bdbl 14749 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2825, 27syldan 282 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2928eqcomd 2202 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
30 breq1 4037 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑠𝑟 ↔ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟))
31 oveq2 5931 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
32 oveq2 5931 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
3331, 32eqeq12d 2211 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < ))))
3430, 33anbi12d 473 . . . . 5 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))))
3534rspcev 2868 . . . 4 ((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+ ∧ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3621, 18, 29, 35syl12anc 1247 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3736ralrimivva 2579 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
38 simp1 999 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
3926bdxmet 14747 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
40 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
41 eqid 2196 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4240, 41metequiv2 14742 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4338, 39, 42syl2anc 411 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4437, 43mpd 13 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {cpr 3624   class class class wbr 4034  cfv 5259  (class class class)co 5923  cmpo 5925  infcinf 7050  cr 7880  0cc0 7881  *cxr 8062   < clt 8063  cle 8064  +crp 9730  ∞Metcxmet 14102  ballcbl 14104  MetOpencmopn 14107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-map 6710  df-sup 7051  df-inf 7052  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-xneg 9849  df-xadd 9850  df-icc 9972  df-seqfrec 10542  df-exp 10633  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-topgen 12941  df-psmet 14109  df-xmet 14110  df-bl 14112  df-mopn 14113  df-top 14244  df-bases 14289
This theorem is referenced by:  mopnex  14751
  Copyright terms: Public domain W3C validator