ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn GIF version

Theorem bdmopn 14918
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
bdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem bdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9782 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 491 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 1003 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
4 xrmincl 11519 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
52, 3, 4syl2anc 411 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
6 rpre 9781 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
76ad2antll 491 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
8 0xr 8118 . . . . . . . 8 0 ∈ ℝ*
98a1i 9 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ∈ ℝ*)
10 rpgt0 9786 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
1110ad2antll 491 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
12 simpl3 1004 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
13 xrltmininf 11523 . . . . . . . . 9 ((0 ∈ ℝ*𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
148, 2, 3, 13mp3an2i 1354 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
1511, 12, 14mpbir2and 946 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < inf({𝑟, 𝑅}, ℝ*, < ))
169, 5, 15xrltled 9920 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ inf({𝑟, 𝑅}, ℝ*, < ))
17 xrmin1inf 11520 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
182, 3, 17syl2anc 411 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
19 xrrege0 9946 . . . . . 6 (((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ inf({𝑟, 𝑅}, ℝ*, < ) ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
205, 7, 16, 18, 19syl22anc 1250 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
2120, 15elrpd 9814 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+)
22 simprl 529 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
23 xrmin2inf 11521 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
242, 3, 23syl2anc 411 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
2522, 5, 243jca 1179 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅))
26 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
2726bdbl 14917 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2825, 27syldan 282 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2928eqcomd 2210 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
30 breq1 4046 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑠𝑟 ↔ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟))
31 oveq2 5951 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
32 oveq2 5951 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
3331, 32eqeq12d 2219 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < ))))
3430, 33anbi12d 473 . . . . 5 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))))
3534rspcev 2876 . . . 4 ((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+ ∧ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3621, 18, 29, 35syl12anc 1247 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3736ralrimivva 2587 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
38 simp1 999 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
3926bdxmet 14915 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
40 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
41 eqid 2204 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4240, 41metequiv2 14910 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4338, 39, 42syl2anc 411 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4437, 43mpd 13 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wral 2483  wrex 2484  {cpr 3633   class class class wbr 4043  cfv 5270  (class class class)co 5943  cmpo 5945  infcinf 7084  cr 7923  0cc0 7924  *cxr 8105   < clt 8106  cle 8107  +crp 9774  ∞Metcxmet 14240  ballcbl 14242  MetOpencmopn 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-map 6736  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-xneg 9893  df-xadd 9894  df-icc 10016  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-topgen 13034  df-psmet 14247  df-xmet 14248  df-bl 14250  df-mopn 14251  df-top 14412  df-bases 14457
This theorem is referenced by:  mopnex  14919
  Copyright terms: Public domain W3C validator