ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn GIF version

Theorem bdmopn 13045
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
bdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem bdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9588 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 483 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 990 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
4 xrmincl 11193 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
52, 3, 4syl2anc 409 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*)
6 rpre 9587 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
76ad2antll 483 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
8 0xr 7936 . . . . . . . 8 0 ∈ ℝ*
98a1i 9 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ∈ ℝ*)
10 rpgt0 9592 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
1110ad2antll 483 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
12 simpl3 991 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
13 xrltmininf 11197 . . . . . . . . 9 ((0 ∈ ℝ*𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
148, 2, 3, 13mp3an2i 1331 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < inf({𝑟, 𝑅}, ℝ*, < ) ↔ (0 < 𝑟 ∧ 0 < 𝑅)))
1511, 12, 14mpbir2and 933 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < inf({𝑟, 𝑅}, ℝ*, < ))
169, 5, 15xrltled 9726 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ inf({𝑟, 𝑅}, ℝ*, < ))
17 xrmin1inf 11194 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
182, 3, 17syl2anc 409 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)
19 xrrege0 9752 . . . . . 6 (((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ inf({𝑟, 𝑅}, ℝ*, < ) ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
205, 7, 16, 18, 19syl22anc 1228 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ)
2120, 15elrpd 9620 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+)
22 simprl 521 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
23 xrmin2inf 11195 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
242, 3, 23syl2anc 409 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)
2522, 5, 243jca 1166 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅))
26 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))
2726bdbl 13044 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑅)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2825, 27syldan 280 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
2928eqcomd 2170 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
30 breq1 3979 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑠𝑟 ↔ inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟))
31 oveq2 5844 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )))
32 oveq2 5844 . . . . . . 7 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))
3331, 32eqeq12d 2179 . . . . . 6 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < ))))
3430, 33anbi12d 465 . . . . 5 (𝑠 = inf({𝑟, 𝑅}, ℝ*, < ) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))))
3534rspcev 2825 . . . 4 ((inf({𝑟, 𝑅}, ℝ*, < ) ∈ ℝ+ ∧ (inf({𝑟, 𝑅}, ℝ*, < ) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)inf({𝑟, 𝑅}, ℝ*, < )) = (𝑧(ball‘𝐷)inf({𝑟, 𝑅}, ℝ*, < )))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3621, 18, 29, 35syl12anc 1225 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3736ralrimivva 2546 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
38 simp1 986 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
3926bdxmet 13042 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
40 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
41 eqid 2164 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4240, 41metequiv2 13037 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4338, 39, 42syl2anc 409 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4437, 43mpd 13 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  wral 2442  wrex 2443  {cpr 3571   class class class wbr 3976  cfv 5182  (class class class)co 5836  cmpo 5838  infcinf 6939  cr 7743  0cc0 7744  *cxr 7923   < clt 7924  cle 7925  +crp 9580  ∞Metcxmet 12521  ballcbl 12523  MetOpencmopn 12526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-map 6607  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-xneg 9699  df-xadd 9700  df-icc 9822  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-topgen 12513  df-psmet 12528  df-xmet 12529  df-bl 12531  df-mopn 12532  df-top 12537  df-bases 12582
This theorem is referenced by:  mopnex  13046
  Copyright terms: Public domain W3C validator