ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lerecd GIF version

Theorem lerecd 9745
Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
rpaddcld.1 (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
lerecd (𝜑 → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))

Proof of Theorem lerecd
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpregt0d 9732 . 2 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
3 rpaddcld.1 . . 3 (𝜑𝐵 ∈ ℝ+)
43rpregt0d 9732 . 2 (𝜑 → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
5 lerec 8870 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
62, 4, 5syl2anc 411 1 (𝜑 → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160   class class class wbr 4018  (class class class)co 5895  cr 7839  0cc0 7840  1c1 7841   < clt 8021  cle 8022   / cdiv 8658  +crp 9682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-rp 9683
This theorem is referenced by:  expnlbnd2  10676  ege2le3  11710
  Copyright terms: Public domain W3C validator